数值分析matlab源程序-数值计算方法matlab源程序.rar最近整理出来的数值分析的matlab源程序,有共轭斜量法(CG算法),Newton差商,doolittle分解,高斯列主元消去,Household矩阵的正交三角化,jacobi迭代求解方程组,lagrange插值,LU分解,Nevill插值算法,Romberg求积分方法,newton下山法,简化newton法,Hermite插值,最小二乘拟合。
2025/1/27 7:55:49 7KB matlab
1
1.1doublegauss_ch1(double(*f)(double),intn);求积分∫_(-1)^1f(x)dx/√(1-x^2)实现n点Gauss-Chebyeshev积分公式;
返回积分的近似值。
在区间[-1,1]上关于权函数1/√(1-x^2)的正交多项为T_n(x)=cos(narccos(x)),T_n(x)在[-1,1]上的n个根是x_k=cos⁡((2k-1)/2nπ),k=1,…,n.n点Gauss-Chebyeshev积分公式为∫_(-1)^1f(x)dx/√(1-x^2)≈π/n∑_(k=1)^nf(cos⁡((2k-1)/2nπ))1.2doublegauss_ch2(double(*f)(double),intn);求积分∫_(-1)^1√(1-x^2)f(x)dx实现n点Gauss-ChebyeshevII型积分公式;
返回积分的近似值。
在区间[-1,1]上关于权函数√(1-x^2)的正交多项为U_n(x)=sin⁡((n+1)arccos⁡(x))/sin⁡(arccos⁡(x)),U_n(x)在[-1,1]上的n个根是x_k=cos⁡(kπ/(n+1)),k=1,…,n.n点Gauss-ChebyeshevII型积分公式为∫_(-1)^1√(1-x^2)f(x)dx≈π/(n+1)∑_(k=1)^nsin^2(kπ/(n+1))f(cos⁡(kπ/(n+1)))1.3doublecomp_trep(double(*f)(double),doublea,doubleb);求积分∫_a^bf(x)dx函数实现逐次减半法复化梯形公式;
返回积分的近似值。
1.4doubleromberg(double(*f)(double),doublea,doubleb);求积分∫_a^bf(x)dx函数实现Romberg积分法;
返回积分的近似值。
1.5doublegauss_leg_9(double(*f));求积分∫_(-1)^1f(x)dx实现9点Gauss-Legendre求积公式。
使用上面实现的各种求积方法求下面的积分:∫_(-1)^1e^x√(1-x^2)dx(=∫_(-1)^1(xe^x)/√(1-x^2)dx)使用第3,4,5个函数求积分:∫_0^(π/2)sin⁡xdx(=1)
2024/11/17 22:41:35 217KB 北邮 数值 符号计算 数值积分
1
数值分析Romberg算法Matlab
2024/5/10 7:22:54 32KB Romberg
1
三次样条插值,拉格朗日插值,牛顿插值,B样条插值,cardinal样条插值。
使用Romberg积分求弧长,使用二分法在曲线上找特定弧长的点
2024/5/8 11:57:56 32.28MB 插值,弧长
1
m文件,利用函数调用的方法,通过matlab命令窗口调用函数rmg()实现。
2024/3/18 15:50:38 582B romberg算法 matlab程序
1
matlab函数,包括:复化梯形公式复化Simpson公式复化四阶Newton-Cotes公式Romberg积分法Gauss-Legendre积分Gauss-Chebyshev积分Gauss-Laguerre积分Gauss-Hermite积分及以上四个正交多项式的生成函数
2023/12/9 19:06:47 89KB 数值积分 matlab
1
高校计算方法上机作业利用romberg方法求积分的近似值的matlab程序
2023/6/11 20:12:37 742B matlab 计算方法 romberg 积分近似
1
哈工大计算方法实验,计算方法Lagrange插值,计算方法Newton迭代法,计算方法Romberg积分法,计算方法四阶Runge-Kutta方法,计算方法绝对Gauss列主元消去法
2023/3/7 10:01:39 398KB 计算方法实验
1
完成了基于matlab的Romberg算法
2023/2/20 4:26:49 582B Romberg
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡