首页 课程资源 讲义     /    北邮数值与符号计算实验数值积分

北邮数值与符号计算实验数值积分

上传者: fzu031002319 | 上传时间:2024/11/17 22:41:35 | 文件大小:217KB | 文件类型:docx
北邮数值与符号计算实验数值积分
1.1doublegauss_ch1(double(*f)(double),intn);求积分∫_(-1)^1f(x)dx/√(1-x^2)实现n点Gauss-Chebyeshev积分公式;
返回积分的近似值。
在区间[-1,1]上关于权函数1/√(1-x^2)的正交多项为T_n(x)=cos(narccos(x)),T_n(x)在[-1,1]上的n个根是x_k=cos⁡((2k-1)/2nπ),k=1,…,n.n点Gauss-Chebyeshev积分公式为∫_(-1)^1f(x)dx/√(1-x^2)≈π/n∑_(k=1)^nf(cos⁡((2k-1)/2nπ))1.2doublegauss_ch2(double(*f)(double),intn);求积分∫_(-1)^1√(1-x^2)f(x)dx实现n点Gauss-ChebyeshevII型积分公式;
返回积分的近似值。
在区间[-1,1]上关于权函数√(1-x^2)的正交多项为U_n(x)=sin⁡((n+1)arccos⁡(x))/sin⁡(arccos⁡(x)),U_n(x)在[-1,1]上的n个根是x_k=cos⁡(kπ/(n+1)),k=1,…,n.n点Gauss-ChebyeshevII型积分公式为∫_(-1)^1√(1-x^2)f(x)dx≈π/(n+1)∑_(k=1)^nsin^2(kπ/(n+1))f(cos⁡(kπ/(n+1)))1.3doublecomp_trep(double(*f)(double),doublea,doubleb);求积分∫_a^bf(x)dx函数实现逐次减半法复化梯形公式;
返回积分的近似值。
1.4doubleromberg(double(*f)(double),doublea,doubleb);求积分∫_a^bf(x)dx函数实现Romberg积分法;
返回积分的近似值。
1.5doublegauss_leg_9(double(*f));求积分∫_(-1)^1f(x)dx实现9点Gauss-Legendre求积公式。
使用上面实现的各种求积方法求下面的积分:∫_(-1)^1e^x√(1-x^2)dx(=∫_(-1)^1(xe^x)/√(1-x^2)dx)使用第3,4,5个函数求积分:∫_0^(π/2)sin⁡xdx(=1) 本软件ID:9544631

文件下载

资源详情

-讲义

评论信息

  • liuguozhi4628:
    一般吧,公式有点问题2019-06-15
  • 不同_寻常:
    很有用,谢谢了2018-05-20

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明