贝塞尔曲线是一种在计算机图形学和数学中广泛使用的参数化曲线,它提供了对形状的精细控制,特别是在曲线拟合和路径设计中。
本资源包含MATLAB源码,用于实现从一阶到八阶的贝塞尔曲线拟合,以及一个拟合后评价标准的文档。
一、贝塞尔曲线基础贝塞尔曲线由法国工程师PierreBézier于1962年提出,它基于控制点来定义。
一阶贝塞尔曲线是线性,二阶是二次曲线,而高阶曲线则可以构建出更复杂的形状。
对于n阶贝塞尔曲线,需要n+1个控制点来定义。
这些曲线的特性在于它们通过首尾两个控制点,并且随着阶数的增加,曲线更好地逼近中间的控制点。
二、MATLAB实现MATLAB是一个强大的数值计算和可视化工具,其脚本语言非常适合进行这样的曲线拟合工作。
`myBezier_ALL.m`文件很可能是包含了从一阶到八阶贝塞尔曲线的生成函数。
这些函数可能接收控制点的坐标作为输入,然后通过贝塞尔曲线的数学公式计算出对应的参数曲线。
MATLAB中的贝塞尔曲线可以通过`bezier`函数或直接使用矩阵运算来实现。
三、贝塞尔曲线拟合拟合过程通常涉及找到一组控制点,使得生成的贝塞尔曲线尽可能接近给定的一系列数据点。
这可能通过优化算法,如梯度下降或遗传算法来实现。
在`myBezier_ALL.m`中,可能包含了一个或多个函数来执行这个过程,尝试最小化曲线与数据点之间的距离或误差。
四、拟合的评价标准"拟合的评价标准.doc"文档可能详述了如何评估拟合的好坏。
常见的评价标准包括均方误差(MSE)、均方根误差(RMSE)或者R²分数。
这些指标可以量化拟合曲线与实际数据点之间的偏差程度。
MSE和RMSE衡量的是平均误差的平方,而R²分数表示模型解释了数据变异性的比例,值越接近1表示拟合越好。
五、应用领域贝塞尔曲线在多个领域有广泛应用,包括但不限于CAD设计、游戏开发、动画制作、图像处理和工程计算。
MATLAB源码的提供,对于学习和研究贝塞尔曲线的特性和拟合方法,或者在项目中创建平滑曲线路径,都是非常有价值的资源。
这份MATLAB源码和相关文档为理解并实践贝塞尔曲线拟合提供了一个完整的工具集。
通过学习和利用这些材料,用户不仅可以掌握贝塞尔曲线的基本概念,还能深入理解如何在实际问题中运用它们进行曲线拟合和评估。
2025/6/30 9:00:23 25KB 贝塞尔曲线 曲线拟合
1
matlab源码,实现1-8阶贝塞尔(bezier)曲线拟合。
另外附了一个拟合后的评价标准,sse,rmse等的说明(感谢hitwyb)
2025/6/30 8:51:16 25KB Matlab bezier 贝塞尔曲线 拟合
1
误差分析计算公式及matlab代码实现(均方误差MSE,平均绝对误差MAE,平均绝对百分比误差MAPE,均方百分比误差MSPE,均方根误差RMSE,残差平方和SSE)
2024/5/27 14:09:33 26KB 误差,matlab
1
使用emd进行回归预测的代码,使用方法结单,只需输入训练集和测试集就可以进行emd预测了,预测的结果会保存在相应的.mat文件里,详细操作请看代码里的操作说明。
资源里有demo,guidence.m文件里有调用实例,直接复制到commandwindows里运行就可以了,简单易懂,汉语注释说明等。
运行结果会直接输出测试集的MAE,RMSE,MAPE,DISTAT这几个统计量
2024/4/25 9:55:47 4KB elm MAE RMSE MAPE DISTAT
1
著名的Netflix智能推荐百万美金大奖赛使用是数据集.因为竞赛关闭,Netflix官网上已无法下载.Netflixprovidedatrainingdatasetof100,480,507ratingsthat480,189usersgaveto17,770movies.Eachtrainingratingisaquadrupletoftheform.TheuserandmoviefieldsareintegerIDs,whilegradesarefrom1to5(integral)stars.[3]Thequalifyingdatasetcontainsover2,817,131tripletsoftheform,withgradesknownonlytothejury.Aparticipatingteam'salgorithmmustpredictgradesontheentirequalifyingset,buttheyareonlyinformedofthescoreforhalfofthedata,thequizsetof1,408,342ratings.Theotherhalfisthetestsetof1,408,789,andperformanceonthisisusedbythejurytodeterminepotentialprizewinners.Onlythejudgesknowwhichratingsareinthequizset,andwhichareinthetestset—thisarrangementisintendedtomakeitdifficulttohillclimbonthetestset.Submittedpredictionsarescoredagainstthetruegradesintermsofrootmeansquarederror(RMSE),andthegoalistoreducethiserrorasmuchaspossible.Notethatwhiletheactualgradesareintegersintherange1to5,submittedpredictionsneednotbe.Netflixalsoidentifiedaprobesubsetof1,408,395ratingswithinthetrainingdataset.Theprobe,quiz,andtestdatasetswerechosentohavesimilarstatisticalproperties.Insummary,thedatausedintheNetflixPrizelooksasfollows:Trainingset(99,072,112ratingsnotincludingtheprobeset,100,480,507includingtheprobeset)Probeset(1,408,395ratings)Qualifyingset(2,817,131ratings)consistingof:Testset(1,408,789ratings),usedtodeterminewinnersQuizset(1,408,342ratings),usedtocalculateleaderboardscoresForeachmovie,titleandyearofreleaseareprovidedinaseparatedataset.Noinformationatallisprovidedaboutusers.Inordertoprotecttheprivacyofcustomers,"someoftheratingdataforsomecustomersinthetrainingandqualifyin
2024/2/19 18:29:23 27KB dataset Netflix
1
fori=1:popcountpop(i,:)=rand(1,9);%初始化粒子位置V(i,:)=rand(1,9);%初始化粒子速度%计算粒子适应度值Center=pop(i,1:3);SP=pop(i,4:6);W=pop(i,7:9);Distance=dist(Center',SamIn);SPMat=repmat(SP',1,SamNum);%repmat具体作用UnitOut=radbas(Distance./SPMat);NetOut=W*UnitOut;%网络输出Error=SamOut-NetOut;%网络误差%SSE=sumsqr(Error);%fitness(i)=SSE;RMSE=sqrt(sumsqr(Error)/SamNum);fitness(i)=RMSE;%fitness(i)=fun(pop(i,:));end
2023/7/7 4:29:40 3KB PSO RBF
1
关于elm进行回归预测的分析,使用方法很简单,只需输入训练集和测试集就可以进行elm预测了,预测的结果会保存在相应的.mat文件里,详细操作请看代码里的操作说明。
资源里有调用函数ELM.m,执行函数guidence.m文件,作为调用实例,直接运行就可以了,简单易懂,汉语正文说明等。
运行结果会直接输出测试集的MAE,RMSE,MAPE,DISTAT这几个统计量
2023/3/14 18:22:44 4KB ELM代码
1
用MATLAB编写,4个基站的基于TDOA的Chan-Taylor混合加权算法定位。
最普通的Chan-Taylor算法,将Chan算法计算出来的估计值作为Taylor级数展开法的迭代初始值带入,之后合理设置Chan算法和Taylor级数展开法的加权系数来提高精度。
采取循环采样5000次,基站位置,标签节点位置,系统噪声标准差都已经预设置好,可以根据要求本人修改。
本代码使用的衡量指标是累积分布函数CDF,也可以本人改成均方误差RMSE。
下载后可以直接运行。
可以用于TDOA定位算法的改进或者比较或者UWB定位都可以。
2016/11/11 2:16:23 2KB 混合加权算法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡