earningDataMiningwithPython-SecondEditionbyRobertLaytonEnglish|4May2017|ASIN:B01MRP7VFV|358Pages|AZW3|2.85MBKeyFeaturesUseawidevarietyofPythonlibrariesforpracticaldataminingpurposes.Learnhowtofind,manipulate,analyze,andvisualizedatausingPython.Step-by-stepinstructionsondataminingtechniqueswithPythonthathavereal-worldapplications.BookDescriptionThisbookteachesyoutodesignanddevelopdataminingapplicationsusingavarietyofdatasets,startingwithbasicclassificationandaffinityanalysis.ThisbookcoversalargenumberoflibrariesavailableinPython,includingtheJupyterNotebook,pandas,scikit-learn,andNLTK.Youwillgainhandsonexperiencewithcomplexdatatypesincludingtext,images,andgraphs.YouwillalsodiscoverobjectdetectionusingDeepNeuralNetworks,whichisoneofthebig,difficultareasofmachinelearningrightnow.WithrestructuredexamplesandcodesamplesupdatedforthelatesteditionofPython,eachchapterofthisbookintroducesyoutonewalgorithmsandtechniques.Bytheendofthebook,youwillhavegreatinsightsintousingPythonfordataminingandunderstandingofthealgorithmsaswellasimplementations.WhatyouwilllearnApplydataminingconceptstoreal-worldproblemsPredicttheoutcomeofsportsmatchesbasedonpastresultsDeterminetheauthorofadocumentbasedontheirwritingstyleUseAPIstodownloaddatasetsfromsocialmediaandotheronlineservicesFindandextractgoodfeaturesfromdifficultdatasetsCreatemodelsthatsolvereal-worldproblemsDesignanddevelopdataminingapplicationsusingavarietyofdatasetsPerformobjectdetectioninimagesusingDeepNeuralNetworksFindmeaningfulinsightsfromyourdatathroughintuitivevisualizationsComputeonbigdata,includingreal-timedatafromtheinternetAbouttheAuthorRobertLaytonisadatascientistworkingmainlyontextminingproblemsforindustriesincl
1