kddtrain2018.txt:100predictiveattributesA1,A2,...,A100和一个类标C,每一个属性是介于0~1之间的浮点数,类标C有三个可能的{0,1,2},给定的数据文件有101列,6270行。
kddtest2018.txt:500行
2024/7/1 9:54:45 2MB 数据
1
数据挖掘在各行业的应用论文数据仓库与数据挖掘.caj空间数据挖掘技术.caj数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj相关案件的数据挖掘.caj数据挖掘技术.caj一种实时过程控制中的数据挖掘算法研究.cajEIS环境下的数据挖掘技术的研究.caj数据挖掘及其工具的选择.caj数据挖掘技术与中国商业银行业务发展策略.caj数据挖掘工具DMTools的设计与实现.caj数据仓库、数据挖掘在银行中的应用.caj基于信息熵的地学空间数据挖掘模型.caj数据挖掘及其在商业银行中的应用.caj数据挖掘与决策支持系统.caj数据仓库、数据集市和数据挖掘.caj数据仓库与数据挖掘1.cajIDSS中数据仓库和数据挖掘的研究与实现.caj基于粗糙集理论的数据挖掘模型.caj数据挖掘及其在SXWG_EIS中的应用.caj数据挖掘——技术与应用综述.caj挖掘转移规则一种新的数据挖掘技术.caj以地物识别和分类为目标的高光谱数据挖掘.caj数据挖掘与虚拟数据库.caj数据挖掘与电力系统.caj浅说数据挖掘.caj带Rough算子的决策规则及数据挖掘中的软计算.caj数据挖掘系统的一种实现策略.caj信息检索中的数据挖掘技术.caj红外光谱谱图库中的数据挖掘.caj中介粗集及其在数据挖掘中的应用.caj数据挖掘在音高变化规律学习中的应用.caj数据挖掘技术在财经领域的应用.caj知识发现和数据挖掘的研究.caj数据仓库与数据挖掘技术浅谈.caj用户访问模式数据挖掘的模型与算法研究.caj数据仓库的建设与数据挖掘技术浅析.caj分类特征规则的数据挖掘技术.caj数据挖掘技术的主要方法及其发展方向.cajOLAP和数据挖掘技术在Web日志上的应用.caj数据挖掘技术12.caj数据挖掘技术初探.caj探索式数据挖掘模型的讨论.caj前向网络bp算法在数据挖掘中的运用.caj数据挖掘在Internet信息导航系统中的应用研究.caj数据挖掘技术123.caj基于粗糙集(Roughset)的数据挖掘及其实现.caj数据挖掘技术在建模、优化和故障诊断中的应用.cajFCC油品质量指标智能监测系统的数据挖掘与修正技术.caj一种测试数据挖掘算法的数据源生成方法.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj神经网络在数据挖掘中的应用研究.caj数据挖掘方法的评述.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj一个面向电子商务的数据挖掘系统的设计与实现.caj数据挖掘技术在煤与瓦斯突出预测中的应用研究.caj基于数据抽取器实现数据挖掘.caj基于数据挖掘的群决策模型.caj基于数据挖掘的普通话韵律规则学习.caj数据挖掘和知识发现的技术方法.caj可视化数据挖掘技术及其应用.caj神经网络数据挖掘方法中的数据准备问题.kdh基于CORBA的数据挖掘工具KDD-DC.caj基于高校人事信息库的数据挖掘研究.caj数据挖掘管理系统.caj电信网告警数据库中的数据挖掘.caj数据挖掘原理、方法及其应用.caj一种基于数据仓库的数据挖掘系统的结构框架.cajOLAP与数据挖掘一体化模型的分析与讨论.caj一种新型数据分析技术——数据挖掘.cajaaa数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其应用.caj数据挖掘中概念树的标准、生成和实现.kdhXML与面向Web的数据挖掘技术.caj数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其在地学中的应用.caj结合数据融合和数据挖掘的医疗监护报警.caj基于多媒体数据库的数据挖掘系统原型.caj数据挖掘技术1.caj股票信息的数据挖掘.caj多媒体数据挖掘的相关媒体特征库方法.caj基于数据挖掘的深部采场岩爆知识的自动获取.caj空间数据挖掘理论与方法的研究.caj金融数据挖掘中的非线性相关跟踪技术(英文).caj数据挖掘技术的一个应用模型.cajDNA中的数据挖掘和启动子识别.caj数据仓库与数据挖掘12.caj数据挖掘系统设计.caj数据挖掘方法的研究.caj用数据挖掘技术优选侧钻井井位.caj关注政府上网后的数据挖掘.kdh数据挖掘技术及其在电力系统中的应用.caj目前数据挖掘算法的评价.caj基于数据挖掘的地下硐室围岩稳定性判别.caj基于属性分类的数据挖掘方法.caj基于数据挖掘模型的高压输电线系统故障诊断.caj用于建模、优化、故障诊断的数据挖掘技术.caj格子机数据挖掘方法.caj数据挖掘及其在电力系统中的应用.kdh用于
1
KDD(KnowledgeDiscoveryinDatabase)CUP2012的论文集还有PPT,非常齐全。
2023/12/11 4:09:07 10.21MB KDD 2012
1
nmanydataanalysistasks,oneisoftenconfrontedwithveryhighdimensionaldata.Featureselectiontechniquesaredesignedtofindtherelevantfeaturesubsetoftheoriginalfeatureswhichcanfacilitateclustering,classificationandretrieval.Thefeatureselectionproblemisessentiallyacombinatorialoptimizationproblemwhichiscomputationallyexpensive.Traditionalfeatureselectionmethodsaddressthisissuebyselectingthetoprankedfeaturesbasedoncertainscorescomputedindependentlyforeachfeature.Theseapproachesneglectthepossiblecorrelationbetweendifferentfeaturesandthuscannotproduceanoptimalfeaturesubset.InspiredfromtherecentdevelopmentsonmanifoldlearningandL1-regularizedmodelsforsubsetselection,weproposehereanewapproach,called{\emMulti-Cluster/ClassFeatureSelection}(MCFS),forfeatureselection.Specifically,weselectthosefeaturessuchthatthemulti-cluster/classstructureofthedatacanbebestpreserved.Thecorrespondingoptimizationproblemcanbeefficientlysolvedsinceitonlyinvolvesasparseeigen-problemandaL1-regularizedleastsquaresproblem.ItisimportanttonotethatMCFScanbeappliedinsuperised,unsupervisedandsemi-supervisedcases.Ifyoufindthesealgoirthmsuseful,weappreciateitverymuchifyoucanciteourfollowingworks:PapersDengCai,ChiyuanZhang,XiaofeiHe,"UnsupervisedFeatureSelectionforMulti-clusterData",16thACMSIGKDDConferenceonKnowledgeDiscoveryandDataMining(KDD'10),July2010.BibtexsourceXiaofeiHe,DengCai,andParthaNiyogi,"LaplacianScoreforFeatureSelection",AdvancesinNeuralInformationProcessingSystems18(NIPS'05),Vancouver,Canada,2005Bibtexsource
2023/11/13 1:03:27 5KB featur
1
KDD99:该数据集是从一个模拟的美国空军局域网上采集来的9个星期的网络连接数据,分成具有标识的训练数据和未加标识的测试数据。
测试数据和训练数据有着不同的概率分布,测试数据包含了一些未出现在训练数据中的攻击类型,这使得入侵检测更具有现实性。
NSL-KDD:是KDD'99数据集的改进
2023/8/24 22:25:58 33.95MB KDD99 NSL-KD 数据集 网络入侵
1
NSL-KDD数据集是KDD99数据集的改进,可以作为有效地基准数据集,各机器学习算法可以在NSL-KDD数据集上进行入侵检测实验。
2023/8/13 4:26:44 6.29MB 数据集 NSL-KDD KDD99 入侵检测
1
将KDD99数据集中的符号性变成数值化,编程语言是Python;KDD数据集的每条连接记录是有38个数字特征和3个符号型特征组成,要相对数据进行处理首先要进行数据的标准化。
符号型特征数值化。
采用属性映射的方法
2023/8/11 16:06:58 17KB KDD
1
2017年KDD算法大赛,Task1以及Task2前三名获奖者的辩说PPT分享。
本次大赛有阿里天池包办,分为Task1以及Task2两个赛题。
2023/5/6 16:55:49 16.9MB KDD 2017
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡