上传者: abc1026497385
|
上传时间:2023/11/13 1:03:27
|
文件大小:5KB
|
文件类型:mlx
特征选择MCFS算法,来自github
nmanydataanalysistasks,oneisoftenconfrontedwithveryhighdimensionaldata.Featureselectiontechniquesaredesignedtofindtherelevantfeaturesubsetoftheoriginalfeatureswhichcanfacilitateclustering,classificationandretrieval.Thefeatureselectionproblemisessentiallyacombinatorialoptimizationproblemwhichiscomputationallyexpensive.Traditionalfeatureselectionmethodsaddressthisissuebyselectingthetoprankedfeaturesbasedoncertainscorescomputedindependentlyforeachfeature.Theseapproachesneglectthepossiblecorrelationbetweendifferentfeaturesandthuscannotproduceanoptimalfeaturesubset.InspiredfromtherecentdevelopmentsonmanifoldlearningandL1-regularizedmodelsforsubsetselection,weproposehereanewapproach,called{\emMulti-Cluster/ClassFeatureSelection}(MCFS),forfeatureselection.Specifically,weselectthosefeaturessuchthatthemulti-cluster/classstructureofthedatacanbebestpreserved.Thecorrespondingoptimizationproblemcanbeefficientlysolvedsinceitonlyinvolvesasparseeigen-problemandaL1-regularizedleastsquaresproblem.ItisimportanttonotethatMCFScanbeappliedinsuperised,unsupervisedandsemi-supervisedcases.Ifyoufindthesealgoirthmsuseful,weappreciateitverymuchifyoucanciteourfollowingworks:PapersDengCai,ChiyuanZhang,XiaofeiHe,"UnsupervisedFeatureSelectionforMulti-clusterData",16thACMSIGKDDConferenceonKnowledgeDiscoveryandDataMining(KDD'10),July2010.BibtexsourceXiaofeiHe,DengCai,andParthaNiyogi,"LaplacianScoreforFeatureSelection",AdvancesinNeuralInformationProcessingSystems18(NIPS'05),Vancouver,Canada,2005Bibtexsource
本软件ID:11048968