用tensorflow框架,深度学习中卷积神经网络cnn模型,对电影评论进行情感二分类。
1
TFlearn中的模型复用,FineTuning,Cifar0_cnn训练后的模型文件,可以直接load之后,继续训练
2023/9/1 18:22:47 23.23MB Tensorflow TFLearn Cifar10_cnn FineTuning
1
培训关于批处理AI的分布式培训此仓库是有关如何使用BatchAI以分布式方式训练CNN模型的教程。
涵盖的场景是图像分类,但是该解决方案可以推广到其他深度学习场景,例如分段和对象检测。
图像分类是计算机视觉应用中的常见任务,通常通过训练卷积神经网络(CNN)来解决。
对于具有大型数据集的大型模型,单个GPU的训练过程可能需要数周或数月。
在某些情况下,模型太大,以致于无法在GPU上放置合理的批处理大小。
在这些情况下使用分布式培训有助于缩短培训时间。
在此特定方案中,使用Horovod在ImageNet数据集以及合成数据上训练ResNet50CNN模型。
本教程演示了如何使用三个最受欢迎的深度学习框架来完成此任务:TensorFlow,Keras和PyTorch。
有许多方法可以以分布式方式训练深度学习模型,包括数据同步和基于同步和异步更新的模型并行方法。
当前,最常见的场景是与同步更新并行的数据-这是最容易实现的,并且对于大多数用例而言已经足够。
在具有同步更新的数据并行分布式训练中,该模型在N个硬件设备之间复制,并且一小批训练样本被划分为N个微批次(参见图2)。
每个设备都
1
上传的是txt文件,里面含有数据集的下载链接和密码,下载方式为百度网盘。
数据集文件是在清华实验室采集到的交通路口图片的基础上,使用labelme对其进行交通信号灯的标注,标注采用VOC格式,全部手工标注,标注图片一共9812张,耗时两个月左右,质量有保证。
标注类别共18类,包括红灯,绿灯,黄灯的各类箭头,以及行人,自行车的信号灯类别。
整体文件包括原始图片,对应标签,保存有文件名的txt文件以及含有具体类别名称的txt文件。
全部打包上传。
已经经过本人使用YOLOV3和fast-r-cnn模型亲自测试,数据集数据真实有效。
相关的模型的文件和训练文件也已经全部上传,可在我发布的其他资源里找到
1
在这篇综述中,我们的目标是在这个快速增长的领域提供尽可能多的新想法和前景。
不仅涉及到二维卷积,还涉及到一维和多维卷积。
首先,这篇综述首先简单介绍了CNN的历史。
第二,我们提供CNN的概述。
第三,介绍了经典的和先进的CNN模型,特别是那些使他们达到最先进的结果的关键点。
第四,通过实验分析,得出一些结论,并为函数选择提供一些经验法则。
第五,介绍了一维、二维和多维卷积的应用。
最后,讨论了CNN的一些有待处理的问题和有发展前景的方向,为今后的工作提供参考。
2015/5/14 13:23:51 3.7MB CNN
1
目录第一章引言 11.1图像质量评价的定义 11.2研究对象 11.3方法分类 21.4研究意义 3第二章历史发展和研究现状 42.1基于手工特征提取的图像质量评价 42.1.1基于可视误差的“自底向上”模型 42.1.1.1Daly模型 42.1.1.2Watson’sDCT模型 52.1.1.3存在的问题 52.1.2基于HVS的“自顶向下”模型 52.1.2.1结构相似性方法 62.1.2.2信息论方法 82.1.2.3存在的问题 92.2基于深度学习的图像质量评价 102.2.1CNN模型 102.2.2多任务CNN模型 122.2.3研究重点 15第三章图像质量评价数据集和功能指标 163.1图像质量评价数据集简介 163.2图像质量评价模型功能指标 17第四章总结与展望 194.1归纳总结 194.2未来展望 19参考文献 21第一章引言随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。
作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。
信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。
图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。
但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。
例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;
在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。
所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。
为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量,图像质量评价(ImageQualityAssessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
1
一种基于CNN模型多元时间序列分类结构,佘强,李静林,多元时间序列分类问题是时间序列挖掘领域中的重要问题,目前的常规做法是使用基于欧氏距离或DTW距离的K近邻分类模型,或基于统计
2018/1/19 1:44:49 481KB 计算机应用技术
1
CNN_classification_feature_extraction该存储库是pytorch中用于分类和特征提取的CNN的实现。
Pytorch预训练的模型已被用于其解释。
该代码支持数据并行性和多GPU,提早停止和类权重。
此外,您可以选择加载预训练的权重(在ImageNet数据集上进行训练)或使用随机权重从头开始训练。
预训练的模型结构在最初一层有1000个节点。
此代码将所有模型的最初一层修改为可与每个数据集兼容。
可以使用以下模型:'resnet18','resnet34','resnet50','resnet101','resnet152','resnext50_32x4d','resnext101_32x8d','wide_resnet50_2','wide_resnet101_2','vgg11','vgg11_bn','vgg13'
2022/9/4 23:46:38 19KB Python
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡