本次数据集是用于高光谱图像分类使用的indian影像数据集,该图像数据集是采用可见光与红外机载式成像光谱仪器(AVIRIS)获取的来自于印第安纳州西北部IndianPines农业试验场的高光谱图像。
用于遥感方向的研究使用。
2024/10/1 15:26:11 5.71MB 高光谱数据集
1
主要介绍用ENVI如何实现地物识别,以求在此过程中更好地熟悉和理解高光谱遥感图像的处理方法和步骤。
本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。
最后,我对一幅相比之下空间分辨率更高的用于军事的高光谱图像进行了部分改进的分析操作,以便比较分类效果。
2024/9/20 12:52:57 2.28MB ENVI 地物识别
1
AVIRIS传感器IndiaPines220波段影像数据matlab数据
2024/6/8 7:13:57 6.02MB AVIRIS
1
使用SVM代码对AVIRIS_Indiana_16class高光谱数据集进行分类
2024/5/2 10:58:52 5.8MB 机器学习 SVM 高光谱
1
包含常用的几种高光谱数据,可以用于遥感图像分类。
WashingtonDCMal,IndianPine等。
ndianPines是最早的用于高光谱图像分类的测试数据,由机载可视红外成像光谱仪(AVIRIS)于1992年对美国印第安纳州一块印度松树进行成像,然后截取尺寸为145×145的大小进行标注作为高光谱图像分类测试用途。
Pavia University数据是由德国的机载反射光学光谱成像仪(Reflective OpticsSpectrographicImagingSystem,ROSIS-03)在2003年对意大利的帕维亚城所成的像的一部分高光谱数据。
该光谱成像仪对0.43-0.86μm波长范围内的115个波段连续成像,所成图像的空间分辨率为1.3m。
其中12个波段由于受噪声影响被剔除,因而一般使用的是剩下103个光谱波段所成的图像。
该数据的尺寸为610×340,因而共包含2207400个像素,但是其中包含大量的背景像素,包含地物的像素总共只有42776个,这些像素中共包含9类地物,包括树、沥青道路(Asphalt)、砖
2023/2/11 2:19:13 195MB 高光谱数据集
1
NASA,AVIRIS卫星影像引见,以及遥感影像的下载!
2023/2/8 15:04:27 1.3MB 遥感
1
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。
以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。
最初采用支持向量机分类器进行分类。
实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。
2019/5/1 5:13:11 253KB 分类算法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡