1基于遗传算法的TSP算法(王辉)2基于遗传算法和非线性规划的函数寻优算法(史峰)3基于遗传算法的BP神经网络优化算法(王辉)4设菲尔德大学的MATLAB遗传算法工具箱(王辉)5基于遗传算法的LQR控制优化算法(胡斐)6遗传算法工具箱详解及应用(胡斐)7多种群遗传算法的函数优化算法(王辉)8基于量子遗传算法的函数寻优算法(王辉)9多目标Pareto最优解搜索算法(胡斐)10基于多目标Pareto的二维背包搜索算法(史峰)11基于免疫算法的柔性车间调度算法(史峰)12基于免疫算法的运输中心规划算法(史峰)13基于粒子群算法的函数寻优算法(史峰)14基于粒子群算法的PID控制优化算法(史峰)15基于混合粒子群算法的TSP寻优算法(史峰)16基于动态粒子群算法的动态环境寻优算法(史峰)17粒子群算法工具箱(史峰)18基于鱼群算法的函数寻优算法(王辉)19基于模拟退火算法的TSP算法(王辉)20基于遗传模拟退火算法的聚类算法(王辉)21基于模拟退火算法的HEV能量管理策略参数优化(胡斐)22蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊)23基于蚁群算法的二维路径规划算法(史峰)24基于蚁群算法的三维路径规划算法(史峰)25有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊)26有导师学习神经网络的分类——鸢尾花种类识别(郁磊)27无导师学习神经网络的分类——矿井突水水源判别(郁磊)28支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊)29支持向量机的回归拟合——混凝土抗压强度预测(郁磊)30极限学习机的回归拟合及分类——对比实验研究(郁磊)
2025/1/13 3:54:45 1.92MB 算法 机器学习 matlab
1
实现svm对鸢尾花进行分类,3个不同品种的花每个50个数据进行分类,鸢尾花数据:archive.ics.uci.edu/ml/datasets/Ilis
2024/12/21 0:31:29 5KB python svm
1
利用感知器算法进行鸢尾花数据分类,还包含一个异或算法,可以解决非线性分类问题
2024/6/13 10:07:08 2KB matlab
1
利用Python和MATLAB语言分别对机器学习中的线性分类器做了详解,其中分类的数据来源于三类鸢尾花的4维特征向量,主要利用了Fisher分类器的方法
2024/6/11 14:06:58 3KB Python 机器学习
1
上述代码是利用python内置的k-means聚类算法对鸢尾花数据的聚类效果展示,注意在运行该代码时需要采用pip或者其他方式为自己的python安装sklearn以及iris扩展包,其中X=iris.data[:]表示我们采用了鸢尾花数据的四个特征进行聚类,如果仅仅采用后两个(效果最佳)则应该修改代码为X=iris.data[2:]
2024/5/9 17:25:35 727B python
1
文件为iris数据集,包括txt和csv格式,可用于机器学习分类学习。
1
matlabPCA的m文件。
数据集Iris是常用的分类实验数据集,由Fisher,1936收集整理。
CSDN上原来有一个arff格式的鸢尾花数据集,不方便matlab直接调用。
我的这个数据集是txt格式的,在matlab下可以直接一句命令“load('iris.txt')”加载。
iris以鸢尾花的特征作为数据来源,常用在分类操作中。
该数据集由3种不同类型的鸢尾花的50个样本数据构成。
其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。
该数据集包含了5个属性:&Sepal.Length(花萼长度),单位是cm;&Sepal.Width(花萼宽度),单位是cm;&Petal.Length(花瓣长度),单位是cm;&Petal.Width(花瓣宽度),单位是cm;&种类:IrisSetosa(山鸢尾)、IrisVersicolour(杂色鸢尾),以及IrisVirginica(维吉尼亚鸢尾
2024/2/15 18:13:37 2KB MATLAB PCA iris
1
将鸢尾花数据python绘制散点图,雷达图,轮廓图,调和曲线图等
2023/11/26 10:42:17 26KB 数据分析 python画图 散点图 雷达图
1
knn的python代码#样本数据150*4二维数据,代表150个样本,#每个样本4个属性分别为花瓣和花萼的长、宽
2023/11/11 8:13:53 2KB 代码
1
机器学习,神经网络多层感知器实现,稍事修改即可实现手写数字识别,鸢尾花识别实验等
2023/9/16 13:20:55 9KB neural learni mlp
1
共 36 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡