本文根据研究课题实用化被动毫米波雷达,结合项目背景和需求,设计开发了基于PCI总线的高速数据采集系统,该数据卡以FPGA为核心器件,其它外围接口的控制逻辑、芯片控制逻辑均由FPGA实现,与上位机之间的通信通过PCI总线完成。
FPGA的内部逻辑设计和算法实现是本文讨论的重点。
大量外围芯片功能集中在单个FPGA芯片中,大大提高了系统的集成度和可靠性。
2024/11/10 18:16:32 1.5MB PCI总线 高速数据采集系统
1
CHI700E系列是通用双恒电位仪,可同时控制同一电解池中的两个工作电极的电位,其典型应用是旋转环盘电极,也能被用于其它需要双工作电极的情况下。
双恒电位仪只能用于同一溶液中的两个工作电极的电位控制以及电流测量,而不是两个独立的恒电位仪。
仪器内含快速数字信号发生器,用于高频交流阻抗测量的直接数字信号合成器,双通道高速数据采集系统,电位电流信号滤波器,多级信号增益,iR降补偿电路,双恒电位仪,以及恒电流仪(CHI760E)。
两个通道的电位范围均为+/-10V。
电流范围(两通道电流之和)为±250mA。
CHI700E系列是在CHI600E的基础上增加了一块电路板,内含第二通道电位控制电路,电流-电压转换器,灵敏度选择,三个增益级,一个具有八个数量级可变频率范围的二阶低通滤波器。
CHI700E能够控制两个工作电极的电位,允许循环伏安法,线性扫描伏安法,阶梯波伏安法,计时安培法,差分脉冲伏安法,常规脉冲伏安法,方波伏安法,时间-电流曲线等实验技术进行双工作电极的测量。
当用作双恒电位仪测量时,第二工作电极电位可以保持在独立的恒定值,也可与第一工作电极同步扫描或阶跃等。
在循环伏安法中,还可与第一工作电极保持一恒定的电位差而扫描。
两个工作电极的电流测量下限均低于50pA,可直接用于超微电极上的稳态电流测量。
CHI700E系列也是十分快速的仪器。
信号发生器的更新速率为10MHz,数据采集采用两个同步16位高分辨低噪声的模数转换器,双通道同时采样的最高速率为1MHz。
循环伏安法的扫描速度为1000V/s时,电位增量仅0.1mV,当扫描速度为5000V/s时,电位增量为1mV。
又如交流阻抗的测量频率可达1MHz,交流伏安法的频率可达10KHz。
仪器还有外部信号输入通道,可在记录电化学信号的同时记录外部输入的电压信号,例如光谱信号等。
这对光谱电化学等实验极为方便。
2024/10/6 4:51:17 13.37MB 辰华
1
本文提出了一种基于LABVIEW的USB接口高速数据采集系统的设计,充分利用DSP丰富的片上外设以及高性能的数字信号处理能力,将采集的数据经DSP处理后通过高速USB接口传输到PC机上,通过LABVIEW软件按照用户的特定要求来处理并显示。
2024/5/14 14:15:03 131KB 串口总线 LABVIEW
1
HI600E系列为通用电化学测量系统。
下图为仪器的硬件结构示意图。
仪器内含快速数字信号发生器,用于高频交流阻抗测量的直接数字信号合成器,双通道高速数据采集系统,电位电流信号滤波器,多级信号增益,iR降补偿电路,以及恒电位仪/恒电流仪(660E)。
电位范围为±10V,电流范围为±250mA。
电流测量下限低于10pA。
可直接用于超微电极上的稳态电流测量。
如果与CHI200B微电流放大器及屏蔽箱连接,可测量1pA或更低的电流。
如果与CHI680C大电流放大器连接,电流范围可拓宽为±2A。
CHI600E系列也是十分快速的仪器。
信号发生器的更新速率为10MHz,数据采集采用两个同步16位高分辨低噪声的模
2023/9/5 3:43:45 17.28MB CHI650D
1
基于FPGA的高速数据采集系统的设计,设计系统的建立和软件的调试。
2023/7/20 12:40:23 190KB FPGA高速采集
1
altera_ug_fifo.pdfaudio_dac_fifo.rarFIFO中文应用笔记.pdfFIFO基础知识.docFPGASoPC软硬件协同设计纵横谈.pdfFPGA的VGA视频输出工程文件//freedev_vgaFPGA的VGA视频输出工程文件.rarFreeDevFPGA音频开发环境和平台构建.pdfNios系统基础上的UItraDMA数据传输模式.docSD_Card_Audio//Audio_DAC_FIFO_altera的ip核DE2_SD_Card_Audiosd_audio_aic23.rarSOPC中自定义FIFO接口与DMA数据传输.pdf什么是FIFO.doc关于fifo的一些概念其quartusII中IP的使用.doc在NIOS-II系统中AD数据采集接口的设计与实现.doc基于Avalon总线的TFTLCD控制器的设计.doc基于FPGA+PCI的并行计算平台实现.doc基于LPM的高速FIFO的设计.doc基于NiosII的图像采集和显示的实现.doc基于SOPC的扭振信号测量系统实现研究.doc基于嵌入式Linux的TFTLCDIP及驱动的设计.doc异步FIFO的VHDL设计.doc采用FPGA的高速数据采集系统.doc非IP核相关FIFO设计//FIFO技术在SDH数字交叉连接芯片设计中的应用.pdfKPCI-817数据采集卡.pdfPCI-8325光电隔离型模入接口卡技术说明书.docUSB7325高速光电隔离型模入数据采集模块技术说明书.doc一款低功耗异步FIFO的设计与实现.pdf一种异步FIFO的设计方法.pdf关于异步FIFO设计的探讨.pdf利用FPGA实现异步FIFO设计.doc基于DSP的高速数据采集与处理系统.pdf基于FPGA异步FIFO的研究与实现.pdf基于FPGA的异步FIFO硬件实现.pdf基于FPGA的异步FIFO设计.pdf基于FPGA的高速异步FIFO存储器设计.pdf基于VerilogHDL的异步FIFO设计与实现.pdf异步FIFO亚稳态问题.doc异步FIFO结构.pdf异步FIFO结构及FPGA设计.pdf怎样对FIFO、RAM读写.doc读写数据宽度不同的异步FIFO设计.PDF高速异步FIFO的实现.pdf
2021/2/7 8:09:37 12.71MB Altera FIFO SOPC IP
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡