这是一个基于stm32的音乐频谱显示,最大采样频率达到6KHz,能够满足一般的音乐播放要求,其中采样FFT变换,将音频信号转变为恁俩信号显示出来
2025/3/5 0:28:05 805KB stm32 FFT
1
(一)信号一段语音信号(一个词或词组,2秒左右),采样频率应在8kHz以上。
(二)要求1. 分别用MATLAB作出短时傅立叶变换、Wigner-Ville分布和小波变换的时频分布图;
2. 列出公式,画出所有图谱;
3. 讨论三种时频分布的结果与特点。
1
解压后,直接用LabVIEW8.2打开即可内容包括1、实现了虚拟信号发生器的仿真显示。
在虚拟信号发生器的图形显示窗上观察模拟输出信号的波形,有正弦波、方波、三角波。
3、实现了虚拟信号发生器的模拟信号输出。
①在设定频率、相位、采样频率、幅值后,输出正弦波、方波、三角波信号,并频率计测量信号频率。
②滤波。
选择不同的截止频率对输出信号进行滤波。
2024/12/22 13:43:58 57KB LabVIEW
1
STM32F4的16通道ADC采集例程,注释清晰,/****************************************************************************PCLK2=HCLK/2下面选择的是2分频ADCCLK=PCLK2/8=HCLK/8=168/8=21MADC采样频率:SamplingTime+ConversionTime=480+12cycles=492cycConversionTime=21MHz/492cyc=42.6ksps.*****************************************************************************//*ADCCommon配置----------------------------------------------------------*/ADC_CommonInitStructure.ADC_Mode=ADC_Mode_Independent;ADC_CommonInitStructure.ADC_Prescaler=ADC_Prescaler_Div2;ADC_CommonInitStructure.ADC_DMAAccessMode=ADC_DMAAccessMode_Disabled;ADC_CommonInitStructure.ADC_TwoSamplingDelay=ADC_TwoSamplingDelay_5Cycles;ADC_CommonInit(&ADC;_CommonInitStructure);
2024/7/24 13:50:45 7.52MB STM32F4 STM32 ADC
1
首先产生K阶Slepian窗的正交序列。
在MATLAB仿真软件中,实现Multitaper算法的函数为PMTM函数。
PMTM函数使用的方法是改进的周期图法线性和非线性结合。
从内部参数和外部参数的角度分别来说明各个参数的作用及其对频谱估计性能的影响。
调整的参数分别为:Slepian序列的时间带宽积,频率域点数,输入数据及其长度,采样频率等。
通过绘制估计得得频谱图来评判谱估计的性能。
2024/7/12 12:10:40 4KB 谱估计 多窗法 仿真
1
抗混叠滤波器是用来移除输入信号中的高频谐波部分,防止高频谐波超过采样频率的一半。
文档我是想免费的奈何积分是自动计算的。
想要免费的就私信我,或者在博客文档里评论留下邮箱
2024/5/27 19:23:56 227KB RCfilter
1
为带通滤波器,需设置半阶数、高低截止频率和采样频率。
保存为function函数的m文件。
rar中为一肌电信号。
1
GPS位置+速度两个观测量卡尔曼惯导航融合,观测传感器滞后的主要思想是,由于惯导的主体为加速度计,采样频率与更新实时性要求比较高,而观测传感器(气压计、GPS、超声波、视觉里程计等)更新相对比较慢(或者数据噪声比较大,通常需要低通造成滞后)。
在无人机动态条件下,本次采样的得到的带滞后观测量(高度、水平位置)已经不能反映最新状态量(惯导位置),我们认定传感器在通带内的延时时间具有一致性(或者取有效带宽内的平均时延值),即当前观测量只能反映系统N*dt时刻前的状态,所以状态误差(在这里指的是气压计与惯导高度、GPS水平位置与惯导水平位置)采用当前观测量与当前惯导做差的方式不可取,在APM里面采用的处理方式为:将惯导的估计位置用数组存起来,更具气压计和GPS的滞后程度,选取合适的Buffer区与当前观测传感器得到位置做差得到状态误差。
————————————————版权声明:本文为CSDN博主「NamelessCotrun无名小哥」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u011992534/article/details/78257684
2024/5/6 15:32:31 997KB 卡尔曼 数据融合 GPS
1
对一组地震波信号进行绘制,并利用fft进行频谱分析,比较不同采样频率和不同采样点数对频谱分析结果造成的影响。
2024/5/3 19:45:08 2KB fft分析
1
Python_验证采样定理利用傅里叶变换与反变换进行抽样与还原,验证采样定理.①原频率固定采样频率改变②采样频率固定原频率改变
2024/4/21 21:34:44 3KB Python 采样定理
1
共 38 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡