在机器人技术领域,路径规划是核心问题之一,特别是在避障任务中。
本算法专注于解决这一问题,提供了一种通用的方法来帮助机器人找到穿越复杂环境的最短路径。
以下是该算法的关键知识点及其详细解释:1.**路径规划算法**:路径规划通常涉及到搜索算法,如A*算法或Dijkstra算法,它们能有效地寻找从起点到终点的最优路径。
在这个通用算法中,机器人可能采用一种类似的搜索策略来避开障碍物。
2.**MATLAB编程**:MATLAB是一种强大的数学计算和数据分析工具,常用于科学和工程领域的建模与仿真。
在这个项目中,MATLAB被用来实现算法,处理路径规划问题。
3.**避障**:避障是机器人自主导航的关键部分,它需要实时地感知周围环境并计算出安全的移动路径。
这个算法可能利用传感器数据(如激光雷达或摄像头)来识别和避开障碍物。
4.**障碍物区域设置**:用户可以根据实际情况自定义障碍物的位置,这表明算法具有一定的灵活性和适应性,能够应对不同的环境条件。
5.**50条路径比较**:算法会生成50条可能的路径,并从中选取最短的一条。
这可能涉及到多条路径的评估和优化,可能使用了某种启发式方法来快速收敛到最优解。
6.**主程序参数**:“主程序参数.txt”文件很可能包含了算法运行时所需的关键参数,如机器人的起始位置、目标位置、障碍物的坐标以及搜索策略的设定值等。
7.**G2D.m**:此文件可能是将高维数据转化为二维表示的函数,便于可视化和理解机器人的路径规划。
在MATLAB中,图形化用户界面或数据可视化通常使用这样的函数来呈现结果。
8.**Route.m**:这个文件很可能是路径规划的核心函数,它可能包含了路径生成、障碍物规避、路径长度计算以及路径选择的逻辑。
这个算法通过结合MATLAB的计算能力,实现了避障路径规划的自动化,允许用户根据实际场景调整障碍物位置,同时确保找到最短路径。
通过分析“主程序参数.txt”和运行“Route.m”及“G2D.m”文件,我们可以深入了解算法的运作机制和优化过程。
在实际应用中,这样的算法可以应用于无人机送货、自动驾驶汽车或服务机器人等各种环境中的自主导航。
2025/12/31 11:01:12 3KB MATLAB 机器人避障 最优路径
1
可以在labview中动态的添加控件。
其中的send.vi为发送程序,可以在运行时在receive.vi中添加一个字符串控件。
2025/12/25 14:04:55 17KB labview
1
SafengineShieldenV2.1.2.0简体中文免费版经过我们检查,是无病毒软件,请放心使用。
Shielden是一款免费的软件加密方案:Shielden入门级加密,包含软件授权系统,关键代码混淆、虚拟化,运行时反调试等功能,将以代码虚拟机为主,授权功能为辅助,提供入门级的软件加密安全方案,将解决由于使用过时、破解的保护软件所带来的无服务、无保障、无更新等问题,为非盈利性的免费版和处于成长期的共享版提供知识产权保护、专业级的抗逆向分析功能,并由Safengine技术支持团队支持,为软件的未来发展提供整套安全方案。
此外,Shielden包含部分SafengineProtector和SafengineLicensor的功能性演示,其保护强度虽然不能满足商业软件保护的应用,但您可以不花一分钱体验Safengine系列商业软件产品提供的专业保护功能。
Shielden入特点:Shielden将不对保护后的软件做任何功能限制,如弹出提示窗口、访问服务器等等,推翻传统免费加密软件有广告、后门的“潜规则”。
1
摘要:在较复杂的变流系统中,主控系统的延滞会影响IGBT模块故障保护的时效性,造成保护失败。
针对这种情况,本文采用光耦驱动芯片HCPL-316J和DSP芯片设计了一种IGBT驱动电路,当光耦芯片故障信号发出后立即封锁IGBT驱动信号,完全消除了主控程序运行时长对故障保护的影响。
通过模拟过流实验和实际应用表明,本设计故障保护响应迅速,运行稳定可靠。
  引言   光耦驱动芯片HCPL-316J是Agilent公司[编者注:2014年8月更名为keysight(是德)公司]生产的栅极驱动电路产品之一,可用于驱动150A/1200V的IGBT,开关速度为0.5?s,有过流检测
1
实验一误差分析一、实验目的及要求1.了解误差分析对数值计算的重要性。
2.掌握避免或减小误差的基本方法。
二、实验设备安装有C、C++或MATLAB的计算机。
三、实验原理误差是指观测值与真值之差,偏差是指观测值与平均值之差。
根据不同的算法,得到的结果的精度是不一样的。
四、实验内容及步骤求方程ax2+bx+c=0的根,其中a=1,b=-(5×108+1),c=5×108采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。
//////////////////////////////实验二Lagrange插值一、实验目的及要求1.掌握利用Lagrange插值法及Newton插值法求函数值并编程实现。
2.程序具有一定的通用性,程序运行时先输入节点的个数n,然后输入各节点的值(),最后输入要求的自变量x的值,输出对应的函数值。
二、实验设备和实验环境安装有C、C++或MATLAB的计算机。
三、算法描述1.插值的基本原理(求解插值问题的基本思路)构造一个函数y=f(x)通过全部节点,即(i=0、1、…n)再用f(x)计算插值,即2.拉格朗日(Lagrange)多项式插值Lagrange插值多项式:3.牛顿(Newton)插值公式////////////////////////////////////实验三高斯消去法解方程组一、实验目的及要求1.掌握求解线性方程组的高斯消去法---列选主元在计算机上的算法实现。
2.程序具有一定的通用性,程序运行时先输入一个数n表示方程含有的未知数个数,然后输入每个线性方程的系数和常数,求出线性方程组的解。
二、实验设备和实验环境安装有C、C++或MATLAB的计算机。
三、算法描述1.高斯消去法基本思路设有方程组,设是可逆矩阵。
高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵,将其中的变换成一个上三角矩阵,然后求解这个三角形方程组。
2.利用列选主元高斯消去法求解线性方程组
1
OV7670摄像头模块负责图像的实时釆集工作。
OV7670内部相关寄存器的配置信息被写入到控制模块,在程序运行时通过I²C总线与OV7670的I²C接口进行信息交互,将OV7670初始化为VGA分辨率、输出RGB565格式数据的模式。
釆集到的图像信息经过写FIFO后,在釆用VerilogHDL设计的SDRAM控制器的控制下,被送至SDRAM进行存储。
图像数据经过图像处理模块(Sobel)被发送到VGA控制器,经VGA接口电路,显示在VGA显器上。
2025/11/22 19:30:13 8.17MB FPGA Sobel Verilog
1
drools的DroolsWorkbench运行时所需jar包drools的DroolsWorkbench运行时所需jar包
2025/11/22 4:55:14 2.87MB kie-drools
1
Numbas是一个用于创建SCORM兼容考试的开源系统,该考试完全在浏览器中运行,由开发。
这是Numbas编辑器。
Numbas运行时可以在找到。
有关更多信息,请参见。
安装可以在找到安装说明。
您可能不需要设置自己的编辑器安装:,该应用程序得到纽卡斯尔大学的支持。
版权版权所有2011-19纽卡斯尔大学根据Apache许可版本2.0(“许可”)许可;
除非遵守许可,否则不得使用此文件。
您可以在以下位置获得许可的副本:除非适用法律要求或以书面形式同意,否则根据“许可”分发的软件将按“原样”分发,不存在任何明示或暗示的保证或条件。
有关许可下特定的语言管理权限和限制,请参阅许可。
您可以在看到该许可证及其允许使用的纯英文解释某些图标:copyright:PJOnori,已在知识共享署名-相同方式共享3.0下获得许可。
2025/11/19 19:16:24 18.11MB javascript python editor education
1
目前类库只有窗体,没有其他控件,但窗体支持MDI。
带两个示例程序,一个多标签浏览器,一个可运行时更换主题的普通窗体。
代码仅用于学习和技术交流之用。
2025/11/19 15:24:39 980KB C# Winform 界面 MDI
1
在编程领域,编译原理是理解计算机如何处理高级语言的关键学科。
这个实验“基于表达式的计算器ExprEval”旨在让学生深入理解编译器的工作原理,并通过实际操作来掌握编译技术。
下面将详细介绍这个实验涉及的知识点,以及如何进行实践。
1.**词法分析(LexicalAnalysis)**:实验的起点通常是输入的源代码,词法分析器负责将源代码分割成一个个有意义的单元,称为“词法单元”或“记号”(Token)。
对于表达式计算器,这些可能包括数字、运算符(如+,-,*,/)以及括号等。
2.**语法分析(SyntaxAnalysis)**:词法分析后的记号流需要按照一定的语法规则进行解析,这就是语法分析的任务。
通常使用上下文无关文法(Context-FreeGrammar,CFG)来描述表达式的结构。
在这个实验中,你需要创建一个解析器来识别并构建抽象语法树(AbstractSyntaxTree,AST),它直观地表示了表达式的结构。
3.**抽象语法树(AST)**:抽象语法树是源代码语法结构的树形表示,每个节点代表一个操作或者值。
在ExprEval中,根节点可能是表达式,子节点可以是操作符和操作数。
AST有助于简化后续的语义分析和代码生成。
4.**语义分析(SemanticAnalysis)**:这一步检查程序的逻辑正确性,例如类型检查和作用域分析。
对于ExprEval,这意味着确保运算符与操作数类型匹配,以及没有未定义的变量。
5.**代码生成(CodeGeneration)**:语义正确的源代码将被转换为机器可执行的指令。
尽管这个实验可能不会涉及实际的机器码生成,但你可以实现一个简单的解释器来执行AST中的操作。
6.**错误处理**:在整个过程中,必须考虑如何优雅地处理错误,如语法错误、类型错误和运行时错误。
良好的错误处理机制能帮助用户更好地理解和修复问题。
7.**实践建议**:尽管实验有一定难度,但实践是最好的老师。
尝试自己编写词法分析器、解析器和解释器,逐步理解每个步骤。
遇到困难时,可以查阅编译原理书籍,如《编译原理》(DragonBook)或者在线资源,同时利用已有的开源编译器项目作为参考。
通过完成“基于表达式的计算器ExprEval”实验,你不仅能掌握编译原理的基本概念,还能提升解决问题和调试代码的能力。
这个过程虽然挑战性大,但收获也会相当丰厚。
不要被复杂性吓倒,一步一步来,你会发现编译原理其实并没有想象中那么难。
1
共 397 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡