armlinux从入口到start_kernel代码详细分析.doc
2025/10/25 19:51:31 57KB arm linux
1
余宁梅,杨媛编著.半导体集成电路[M].北京:科学出版社,2011.07.本书从半导体集成电路的角度分析电路系统,不仅讨论电路的工作原理,更关注分析电路性能及实现方法对性能的影响。
首先介绍了集成电路的整体概念,然后分别讲解数字集成电路和模拟集成电路。
在数字集成电路部分,简单讲解双极晶体管的基本原理、制作工艺、寄生效应和典型电路,重点讲述CMOS集成电路的相关内容,详细分析MOS数字集成电路的基本单元、实现工艺、基本逻辑单元构成及特性、系统构成。
在模拟电路部分,分别讨论MOS和双极型电路的特性,包括基本的模拟电路结构及各自的特点、Bi-CMOS电路原理及应用。
本书内容力求引入最新
2025/10/20 8:21:22 44.01MB 半导体 集成电路
1
这是我的TLD完整注释,详细分析见我的博客
2025/10/8 20:25:18 28KB TLD
1
在matlab中基于卡尔曼滤波的目标跟踪程序
卡尔曼滤波作为一种在多个领域中被视为一种数学方法,在信号处理和预测方面得到了广泛的应用。
特别是在目标跟踪领域,其应用效果尤为突出。
通过在MATLAB环境下开发目标跟踪程序,我们能够更高效地处理动态环境中目标的定位与预测问题。
本文将对这一主题进行深入解析:首先,介绍卡尔曼滤波的基础知识;
其次,探讨其在MATLAB中的实现方式;
最后,详细分析其在目标跟踪领域的具体应用及其实践步骤。
通过系统的学习和实践操作,可以全面掌握卡尔曼滤波器的设计与应用技巧,从而在实际工程中灵活运用这一重要算法。
卡尔曼滤波作为一种线性最小方差估计方法,是由数学家鲁道夫·卡尔曼于1960年首次提出。
它通过融合多源信息,包括观测数据和预测模型,对系统状态进行最优估计。
在目标跟踪过程中,卡尔曼滤波器能够有效结合历史估计结果与当前观测数据,从而更新目标位置的最新认知。
掌握这一技术不仅能提升信号处理能力,还能为复杂的动态系统建模提供有力支持。
卡尔曼滤波在目标跟踪中的应用主要包含以下几个关键步骤:1)状态转移模型的建立;
2)观测模型的设计;
3)预测阶段的操作流程;
4)更新阶段的具体实现方式。
每一环节都需要精确地定义其数学关系,并通过迭代计算逐步优化结果。
理解并熟练运用这些步骤,是掌握卡尔曼滤波器核心原理的关键所在。
压缩包中的内容包含以下几部分:1)新手必看.htm文件:这是一份针对编程初学者的详细指南,提供了程序的基本使用方法、参数配置以及常见问题解答等实用信息;
2)Matlab中文论坛--助努力的人完成毕业设计.url:这是一个指向MATLAB中文论坛的链接,用户可以在该平台找到丰富的学习资源和交流讨论区,以获取更多编程技巧和项目灵感;
3) kalman tracking:这是实际的MATLAB代码文件,包含了卡尔曼滤波目标跟踪算法的具体实现。
通过仔细分析这些代码,可以深入了解算法的工作原理及其实现细节。
为了更好地掌握卡尔曼滤波器的应用技术,建议采取以下学习与实践策略:第一,深入理解卡尔曼滤波的理论基础和数学模型;
第二,系统学习MATLAB编程技能;
第三,深入研究并解析相关的代码实现;
第四,结合实际数据进行仿真实验。
通过循序渐进的学习方式,可以逐步掌握这一技术的核心要点,并将其应用于各种实际场景中。
2025/10/8 10:19:25 615KB matlab 目标跟踪
1
概率论与数理统计韩旭里版教学课件讲解详细分析详细独辟蹊径
2025/9/30 7:14:08 2.56MB 韩旭里版
1
Winning.Ways.for.Your.Mathematical.Plays1至4卷关于游戏的数学本质及详细分析
2025/8/24 6:47:23 60.34MB 数学 游戏 电子书 pdf
1
作者全部手打创作的自考C++笔记,含课本中例子的详细分析,(上)共47200字,就是没有学过C语言的人认真看了以后,也可学会并通过C++自考
2025/7/18 1:20:19 419KB 自考C++笔记
1
Hadoop源码分析(完整版),详细分析了Hadoop源码程序,为学习Hadoop的人提供很好的入门指导
2025/7/11 0:09:57 6.47MB Hadoop 大数据
1
本书定位于初学缓冲区溢出利用的读者;
并照顾想学习缓冲区溢出技术的朋友。
本书的目的是用幽默的语言和通俗的解释,对Windows缓冲区溢出编程的思路和思维进行详细分析;
并用大量实例对溢出的实际利用进行一次又一次详尽的讲解。
本书没有枯燥的、大段汇编代码的解释;
没有复杂的、Windows系统结构的定义,阅读起来不会有混混欲睡的乏味感!书里面,有的是活波生动的语言;
有的是的美好纯真的校园生活;
有的是可遇不可求的经验;
有的是直截了当、图文并茂的手把手操作;
有的是引导读者感受程序设计的艺术,并在缓冲区溢出的美妙世界中遨游;
有的提示和建议是能引起读者浓厚的兴趣,能够自觉下去再找相关的资料完善自己。
知识就像一个圆;
圆的面积是你所知道的东西;
圆的边长是你不知道的东西。
圆越大,那么边就越长。
所以当你知道得越多,那么你不清楚的就更多!所以,我们都要自觉的学习,不断的勤奋学习,这样才能不落伍,才能与当今纷杂的社会竞争!缓冲区溢出是安全论坛上最常见的问题,包括堆栈缓冲区的利用思想,ShellCode的初步编写、变形、高级利用,以及堆溢出的利用,漏洞的亲自分析等。
当然,每个部分都有大量的实例,让大家实际操作,学以致用。
后一章都以前一章为基础,逐渐深入并展开。
在学习前面的内容时,如果有些地方不了解,可以在后面的章节中找到答案;
后面不清晰的地方,也可以翻看前面的知识,以进一步巩固自己!如果读者能在白忙之中抽出5分钟时间来翻看这本书,那么我希望能吸引你再用几个小时的时间来读完这本书。
然后用更多的时间,去实际操作书中的每一个例子,进一步的学习,进一步的寻找答案。
“课后解惑”部分,是根据作者学习中遇到的问题和论坛上较常见的提问整理出来的经验之谈。
有些可能是翻遍资料都找不到答案的注意事项。
最后,希望阅读这本书没有浪费你宝贵的时间!
2025/7/2 0:58:11 17.15MB 缓冲溢出 教程 win32 溢出
1
sip信令详解,超详细,仔细讲解了sip概述、消息格式和基本消息流程,详细分析了消息流程中的各项sip信令参数
2025/6/30 8:46:22 715KB sip 信令
1
共 112 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡