这个压缩包里共包括两个源代码,分别是训练算法,实际分类检测算法,主要是利用BP神经网络来分类。
训练算法的原理可以直接参考,实际分类检测就是利用训练好的BP神经网络参数来进行分类。
我的BP网络结构是3层,783结构。
2025/11/5 18:07:08 31.97MB BP 分类 神经网络
1
将上面的脚本放在Unity项的目录资源文件夹的Editor里。
刷新一下菜单栏,会发现多了一个Terrain的菜单。
先在场景中选中地形对象,如果没选,他将用于当前场景中可用的地形。
然后从Terrain菜单下选择ExportToObj...接下来会弹出一个框,在这里你可以选择要导出四边形网络结构还是三角形网络结构,还可以选择要导出的地形的分辨率,有高中低...。
最后点击Export,选择要保存的位置和文件名,.obj文件将被导出。
注意:如果选择大面积的Full地形导出,最终.obj文件将非常大,而且也要导出很久。
2025/11/1 12:37:03 7KB 地形 obj 地形转obj
1
山东大学《数据科学导论》实验三:基于Twitter的网络结构和社会群体演化实验源码完成了崔老师要求的内容和扩展内容
2025/10/11 4:22:28 10KB 山东大学 数据科学导论 桑基图
1
目录1.前言 22.用户业务需求分析 22.1用户业务类型需求分析 22.2网络功能需求分析 22.2.1信息交流功能 22.2.2教学服务功能 32.2.3.学生学习功能 32.2.4.学校管理功能 33.网络性能需求分析 33.1.网络结构需求分析 43.1.1.拓扑结构需求分析 43.1.2.网络节点需求分析 43.1.3.网络链路需求分析 43.2.网络扩展性需求分析 43.2.1.用户业务的扩展性 43.2.2.网络性能的扩展性 43.2.3.网络结构的扩展性 53.2.4.网络软件的扩展性 53.3.网络性能需求分析 53.4.网络安全需求分析 53.4.1系统软件和硬件的安全需求 53.4.1.数据安全需求: 63.4.2.用户认证需求: 63.5.网络可靠性需求分析 63.6.网络管理需求分析 63.7.网络投资约束条件分析: 7
2025/10/3 2:05:04 78KB 网络工程
1
提出了基于深度学习的聚类算法模型,将深度学习和聚类技术结合起来。
首先用深层神经网络结构对原始数据进行特征学习,然后对学习到的特征表示进行预聚类,最后在微调模块中进行特征的优化和聚类的优化。
这种模型能够学习到大规模数据中隐含的深层特征,并根据聚类要求进行进一步优化,在保持原始数据的结构的同时发掘数据簇结构。
在微调部分作者新设计了目标函数,使得微调完全成为一个优化的问题。
2025/9/2 17:17:55 4.85MB 深度学习 聚类
1
超清版的《神经网络结构设计的理论和方法》,对神经网络的设计方法讲的很到位
2025/8/10 2:08:49 4.78MB 神经网络设计
1
实现了使用DNN来做VAD的功能,模型非常小,使用了TDNN的网络结构,注意:需要在LINUX上执行,感觉效果还不错,欢迎大家使用并提出宝贵意见。
2025/7/19 3:04:19 663KB VAD ASR DNN
1
UNETResNet50网络结构caffe版本,
2025/7/9 6:18:10 49KB 语义分割
1
这里主要讲深度学习用在超分辨率重建上的开山之作SRCNN。
超分辨率技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像和医学影像等领域都有重要的应用价值。
SR可分为两类:从多张低分辨率图像重建出高分辨率图像和从单张低分辨率图像重建出高分辨率图像。
基于深度学习的SR,主要是基于单张低分辨率的重建方法,即SingleImageSuper-Resolution(SISR)。
SR方法主要可以分为四种模型:基于边缘,基于图像统计,基于样本(基于补丁)的方法。
本文的SRCNN网络结构非常简单,仅仅只有三层网络就是实现了SR。
网络结构如下图所示:
2025/7/5 4:41:07 84.93MB matlab
1

OPNET仿真是一种在计算机上构建虚拟网络环境的技术,旨在模拟和预测真实网络环境的行为和性能。
随着网络技术的迅速发展,网络结构和规模日益庞大和复杂,传统的网络设计方法基于经验,已经不能适应现代网络的需求。
因此,网络仿真技术应运而生,它通过构建模型来模拟网络设备、链路、协议等,并通过这些模型来获取网络设计或优化所需的性能数据。
OPNET软件是由OPNET公司开发的,该公司起源于麻省理工学院,成立于1986年。
OPNET公司最初只有一种产品OPNET Modeler,但现在已经发展出Modeler、ITGuru、SPGuru、WDMGuru、ODK等一系列产品。
OPNET Modeler是一个通信系统网络仿真开发和应用平台,提供了三层建模机制,包括进程域、节点域和网络域,采用离散事件驱动的模拟机理。
使用OPNET Modeler进行网络建模仿真的过程可以分为六个步骤:配置网络拓扑、配置业务、收集结果统计量、运行仿真、调试模块再次仿真,以及最后发布结果报告。
这样的步骤可以帮助用户完成从网络结构分析、设计到建设和管理的整个流程,提供了一个综合开发环境,不仅支持通信网络建模,也支持离散系统的建模。
基于OPNET的校园网设计和建模仿真是指在OPNET软件平台上对校园网进行设计和仿真的过程。
仿真的目的是为了在计算机中构造一个虚拟环境来反映校园网的现实环境和行为。
通过对校园网的网络结构、设备、链路和协议进行建模,可以分析校园网的性能,验证设计的可行性,并确保网络性能满足实际需求。
文章中提到的网络仿真技术的核心理论基础包括系统理论、形式化理论、随机过程理论、统计学和优化理论。
这些理论为网络仿真提供了科学的方法论支撑,使得仿真过程和结果具有可靠的依据。
通过网络仿真,网络规划者和设计者可以在降低风险的同时,提高规划和设计的可靠性与准确性,缩短网络建设周期,并提高决策的科学性。
文章还强调了OPNET软件的广泛应用,包括在企业、网络运营商、仪器配备厂商以及军事、教育、银行、保险等多个行业。
知名公司如Cisco和AT&T都采用OPNET进行各种模拟和调试,而美国国防领域也广泛采用OPNET。
在实际应用中,OPNET Modeler不仅提供了丰富的技术、协议和设备模型库,还提供了适合各个层次的建模工具和功能强大且形式灵活的仿真分析工具。
这样的特性使得OPNET成为网络虚拟建模和仿真的主流软件,并因其在仿真中采用的精确模拟方式和呈现的仿真结果赢得了众多奖项。
2025/6/18 10:33:57 475KB
1
共 83 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡