#include#include#include#defineMAX100/*动态规划矩阵链乘*/typedefstruct{ intm[MAX][MAX]; ints[MAX][MAX];}res;voidInitP(int*p,intlength){ inti; printf("\n初始化序列p,请输入p的维数\n"); for(i=0;i<length;i++) { printf("p[%d]=",i); scanf("%d",&p[i]); }}
2025/8/29 15:09:31 173KB 矩阵链乘法
1
C-C方法计算时间延迟和嵌入维数主程序:C_CMethod.m,C_CMethod_independent.m子函数:correlation_integral.m(计算关联积分)disjoint.m(将时间序列拆分成t个不相关的子序列)heaviside.m(计算时间序列的海维赛函数值)参考文献Nonlineardynamics,delaytimes,andembeddingwindows。
计算Lyapunov指数:largest_lyapunov_exponent.m(用吕金虎的方法计算最大Lyapunov指数)参考文献:基于Lyapunov指数改进算法的边坡位移预测。
lyapunov_wolf.m(用wolf方法计算最大Lyapunov指数)计算关联维数:G_P.m(G-P算法)混沌时间序列预测主函数MainPre_by_jiaquanyijie_1.m(该程序用加权一阶局域法对数据进行进行一步预测)MainPre_by_jiaquanyijie_n.m(该程序用加权一阶局域法对数据进行进行n步预测)MainPre_by_Lya_1.m(基于最大Lyapunov指数的一步预测)MainPre_by_Lya_n.m(基于最大Lyapunov指数的n步预测)nearest_point.m(计算最后一个相点的最近相点的位置及最短距离)子函数jiaquanyijie.m(该函数用加权一阶局域法(xx)、零级近似(yy)和基于零级近似的加权一阶局域法(zz)对时间数据进行一步预测)pre_by_lya.m(基于最大Lyapunov指数的预测方法)pre_by_lya_new.m(改进的基于最大Lyapunov指数的预测方法)
2025/8/19 3:36:29 669KB 混沌 算法
1
任意维数欧氏空间中的旋转矩阵推导。
可以用作高维数据处理的快速算法。
注意:不是主轴化算法!不是主轴化算法!不是主轴化算法!只有数学理论,没有代码,没有代码,没有代码。
2025/6/8 3:04:22 42KB 高维空间 旋转矩阵 多维空间
1
基于局部视觉特征聚合的图像检索,用VLAD方法降低图像特征向量维数。
2025/6/8 0:44:43 10.08MB 图像检索 VLAD sift
1
一种基于LBP和CNN的人脸识别算法,徐镇,刘阳,针对直接将人脸图像作为卷积神经网络的输入,往往会出现人脸图像维数过高且会忽略人脸局部结构特征信息等问题,本文主要研究一种
2025/5/30 16:37:03 453KB 首发论文
1
通过特征空间的降维,消除人脸特征之间的关联性,同时用降低了维数,避免了维数灾难。
比较好的方案。
2025/5/25 16:24:22 7.01MB 特征提取
1
1、matlab实现原文例子;
2、Walcott-Zak观测器虽然对系统的非线性/不确定性具有鲁棒性,但观测器设计需要满足严格的假设条件,设计参数的选取需要计算大量不等式,当系统维数较高时,往往难以实现。
在Walcott-Zak基础上,提出了一种鲁棒滑模观测器,基于设计新的控制策略,避免了Walcott-Zak观测器所必须满足的严格条件,设计参数的求取不需要求解大量方程,同时能够保证对非线性/不确定性具有鲁棒性。
通过设计滑模,可以调整观测器跟踪系统状态的收敛速度,使状态估计达到预期目标,仿真结果验证了控制策略的有效性。
1
研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.
1
结合高光谱数据和深度学习的特点,提出一种同时考虑像素光谱信息和空间信息的深度卷积神经网络框架。
该框架主要步骤如下:首先利用主成分分析法对高光谱遥感图像进行光谱特征提取,消除特征之间的相关性,并降低特征维数,获得清晰的空间结构;
然后利用深度卷积神经网络对输入的样本进行空间特征提取;
最后通过学习到的高级特征进行回归训练
2025/1/22 10:55:54 3.25MB 深度学习 高光谱图像 分类
1
小波变换的图像处理%MATLAB2维小波变换经典程序%FWT_DB.M;%此示意程序用DWT实现二维小波变换%编程时间2004-4-10,编程人沙威%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clear;clc;T=256;%图像维数SUB_T=T/2;%子图维数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1.调原始图像矩阵loadwbarb;%下载图像f=X;%原始图像%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.进行二维小波分解l=wfilters('db10','l');%db10(消失矩为10)低通分解滤波器冲击响应(长度为20)L=T-length(l);l_zeros=[l,zeros(1,L)];%矩阵行数与输入图像一致,为2的整数幂h=wfilters('db10','h');%db10(消失矩为10)高通分解滤波器冲击响应(长度为20)h_zeros=[h,zeros(1,L)];%矩阵行数与输入图像一致,为2的整数幂fori=1:T;%列变换row(1:SUB_T,i)=dyaddown(ifft(fft(l_zeros).*fft(f(:,i)'))).';%圆周卷积FFTrow(SUB_T+1:T,i)=dyaddown(ifft(fft(h_zeros).*fft(f(:,i)'))).';%圆周卷积FFTend;forj=1:T;%行变换line(j,1:SUB_T)=dyaddown(ifft(fft(l_zeros).*fft(row(j,:))));%圆周卷积FFTline(j,SUB_T+1:T)=dyaddown(ifft(fft(h_zeros).*fft(row(j,:))));%圆周卷积FFTend;decompose_pic=line;%分解矩阵%图像分为四块lt_pic=decompose_pic(1:SUB_T,1:SUB_T);%在矩阵左上方为低频分量--fi(x)*fi(y)rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T);%矩阵右上为--fi(x)*psi(y)lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T);%矩阵左下为--psi(x)*fi(y)rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T);%右下方为高频分量--psi(x)*psi(y)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.分解结果显示figure(1);colormap(map);subplot(2,1,1);image(f);%原始图像title('originalpic');subplot(2,1,2);image(abs(decompose_pic));%分解后图像title('decomposedpic');figure(2);colormap(map);subplot(2,2,1);image(abs(lt_pic));%左上方为低频分量--fi(x)*fi(y)title('\Phi(x)*\Phi(y)');subplot(2,2,2);image(abs(rt_pic));%矩阵右上为--fi(x)*psi(y)title('\Phi(x)*\Psi(y)');subplot(2,2,3);image(abs(lb_pic));%矩阵左下为--psi(x)*fi(y)title('\Psi(x)*\Phi(y)');subplot(2,2,4);image(abs(rb_pic));%右下方为高频分量--psi(x)*psi(y)title('\Psi(x)*\Psi(y)');%%%%%%%
2024/12/29 6:42:54 2KB 小波变换 matlab
1
共 95 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡