这个Matlab工具箱实现32种维数降低技术。
这些技术都可以通过COMPUTE_MAPPING函数或trhoughGUI。
有以下技术可用: -主成分分析('PCA') -线性判别分析('LDA') -多维缩放('MDS') -概率PCA('ProbPCA') -因素分析('因子分析') -Sammon映射('Sammon') -Isomap('Isomap') -LandmarkIsomap('LandmarkIsomap') -局部线性嵌入('LLE') -拉普拉斯特征图('Laplacian') -HessianLLE('HessianLLE') -局部切线空间对准('LTSA') -扩散图('DiffusionMaps') -内核PCA('KernelPCA') -广义判别分析('KernelLDA') -随机邻居嵌入('SNE') -对称随机邻接嵌入('SymSNE') -t分布随机邻居嵌入('tSNE') -邻域保留嵌入('NPE') -线性保持投影('LPP') -随机接近嵌入('SPE') -线性局部切线空间对准('LLTSA') -保形本征映射('CCA',实现为LLE的扩展) -最大方差展开('MVU',实现为LLE的扩展) -地标最大差异展开('地标MVU') -快速最大差异展开('FastMVU') -本地线性协调('LLC') -歧管图表('ManifoldChart') -协调因子分析('CFA') -高斯过程潜变量模型('GPLVM') -使用堆栈RBM预训练的自动编码器('AutoEncoderRBM') -使用进化优化的自动编码器('AutoEncoderEA')此外,工具箱包含6种内在维度估计技术。
这些技术可通过INTRINSIC_DIM函数获得。
有以下技术可用: -基于特征值的估计('EigValue') -最大似然估计器('MLE') -基于相关维度的估计器('CorrDim') -基于最近邻域评估的估计器('NearNb') -基于包装数量('PackingNumbers')的估算器 -基于测地最小生成树('GMST')的估计器除了这些技术,工具箱包含用于预白化数据(函数PREWHITEN),精确和估计样本外扩展(函数OUT_OF_SAMPLE和OUT_OF_SAMPLE_EST)的函数以及生成玩具数据集(函数GENERATE_DATA)的函数。
工具箱的图形用户界面可通过DRGUI功能访问
2024/9/5 12:27:19 1.06MB matlab,降维
1
原创,测试识别率0.99,重构图像完全比不上PCA,但能满足分类要求。
可下载后直接运行,并保存特征向量数据
2024/7/21 9:08:02 5.1MB LDA 人脸识别
1
使用LDA(线性判别分析)算法提取一维数字信号(数组)的特征,可用于信号的分类识别。
2023/12/14 9:01:36 590B LDA
1
这是线性判别分析的一个matlabcode,有具体实例的运行结果,还有关于LDA算法的详细讲解,通俗易懂,希望对大家有用.
2023/11/22 14:53:45 269KB LDA,matlab code 线性判别分析
1
使用matlab实现的线性判别分析代码,输入、输出、关键代码注释以及示例都有详细的说明。
代码正确性已经得到验证!
2023/8/18 12:15:09 1KB 线性判别分析 LDA matlab
1
用fisher线性判别分析建立P300分类模型。
特征提取用PCA。
2023/6/15 6:41:42 8KB fisher P300 LDA PCA
1
Matlab代码LDA分析,可以用作特征提取或许分类器
2018/1/2 16:04:10 630KB LDA 线性判别分析
1
本研究回顾了基于主成分分析PCA和判别分析LDA的降维方法及其扩展,包括经典主成分分析、概率主成分分析、核主成分分析,以及线性判别分析、局部保持降维、图形嵌入判别分析和半监督降维分析。
2022/9/4 7:32:06 1020KB PCA LDA 高光谱降维
1
这项工作提出了一种提取电流波形特征以识别家用电器的方法。
短时傅立叶变换(STFT)和内核PCA技术用于提取这些特征。
一旦定义了特征,分类器k-最近邻(kNN)、支持向量机(SVM)、线性判别分析(LDA)、随机森林(RF)和极限学习机(ELM)被用于设备(??或组合)电器)标识。
PS:ELM算法摘自http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm并顺应本工作
2016/3/9 1:10:18 6.61MB matlab
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡