第1章绪论1.1计算机图形学及其相关概念1.2计算机图形学的发展1.2.1计算机图形学学科的发展1.2.2图形硬件设备的发展1.2.3图形软件的发展1.3计算机图形学的应用1.3.1计算机辅助设计与制造1.3.2计算机辅助绘图1.3.3计算机辅助教学1.3.4办公自动化和电子出版技术1.3.5计算机艺术1.3.6在工业控制及交通方面的应用1.3.7在医疗卫生方面的应用1.3.8图形用户界面1.4计算机图形学研究动态1.4.1计算机动画1.4.2地理信息系统1.4.3人机交互1.4.4真实感图形显示1.4.5虚拟现实1.4.6科学计算可视化1.4.7并行图形处理第2章计算机图形系统及图形硬件2.1计算机图形系统概述2.1.1计算机图形系统的功能2.1.2计算机图形系统的结构2.2图形输入设备2.2.1键盘2.2.2鼠标器2.2.3光笔2.2.4触摸屏2.2.5操纵杆2.2.6跟踪球和空间球2.2.7数据手套2.2.8数字化仪2.2.9图像扫描仪2.2.10声频输入系统2.2.11视频输入系统2.3图形显示设备2.3.1阴极射线管2.3.2CRT图形显示器2.3.3平板显示器2.3.4三维观察设备2.4图形显示子系统2.4.1光栅扫描图形显示子系统的结构2.4.2绘制流水线2.4.3相关概念2.5图形硬拷贝设备2.5.1打印机2.5.2绘图仪2.6OpenGL图形软件包2.6.1OpenGL的主要功能2.6.2OpenGL的绘制流程2.6.3OpenGL的基本语法2.6.4一个完整的OpenGL程序第3章用户接口与交互式技术3.1用户接口设计3.1.1用户模型3.1.2显示屏幕的有效利用3.1.3反馈3.1.4一致性原则3.1.5减少记忆量3.1.6回退和出错处理3.1.7联机帮助3.1.8视觉效果设计3.1.9适应不同的用户3.2逻辑输入设备与输入处理3.2.1逻辑输入设备3.2.2输入模式3.3交互式绘图技术3.3.1基本交互式绘图技术3.3.2三维交互技术3.4OpenGL中橡皮筋技术的实现3.4.1基于鼠标的实现3.4.2基于键盘的实现3.5OpenGL中拾取操作的实现3.6OpenGL的菜单功能第4章图形的表示与数据结构4.1基本概念4.1.1基本图形元素4.1.2几何信息与拓扑信息4.1.3坐标系4.1.4实体的定义4.1.5正则集合运算4.1.6平面多面体与欧拉公式4.2三维形体的表示4.2.1多边形表面模型4.2.2扫描表示4.2.3构造实体几何法4.2.4空间位置枚举表示4.2.5八叉树4.2.6BSP树4.2.7OpenGL中的实体模型函数4.3非规则对象的表示4.3.1分形几何4.3.2形状语法4.3.3粒子系统4.3.4基于物理的建模4.3.5数据场的可视化4.4层次建模4.4.1段与层次建模4.4.2层次模型的实现4.4.3OpenGL中层次模型的实现第5章基本图形生成算法5.1直线的扫描转换5.1.1数值微分法5.1.2中点Bresenham算法5.1.3Bresenham算法5.2圆的扫描转换5.2.1八分法画圆5.2.2中点Bresenham画圆算法5.3椭圆的扫描转换5.3.1椭圆的特征5.3.2椭圆的中点Bresenham算法5.4多边形的扫描转换与区域填充5.4.1多边形的扫描转换5.4.2边缘填充算法5.4.3区域填充5.4.4其他相关概念5.5字符处理5.5.1点阵字符5.5.2矢量字符5.6属性处理5.6.1线型和线宽5.6.2字符的属性5.6.3区域填充的属性5.7反走样5.7.1过取样5.7.2简单的区域取样5.7.3加权区域取样5.8在OpenGL中绘制图形5.8.1点的绘制5.8.2直线的绘制5.8.3多边形面的绘制5.8.4OpenGL中的字符函数5.8.5Op
2025/11/5 19:37:38 110.55MB 图形学 VR
1
数值计算方法一与计算机相结合是木书的特点,也是科学计算发展的需要随着计算机的不断发展和进步,优秀的数学软件h'IATI}AI3应运而生,hiATi.AI3一问世就以它强大的功能,被广大科技工作者公认为科学计算最好的软件之一为使数值分析与hMATI}AI3更好地结合,我们以最新版htATLAI3为平台,编写了新版《数值计算方法》,这也是数值计算方法教材发展进步的必然结果.本书介绍了数值计算方法.内容涉及数值计算方法的数学基础、数值计算方法在工程、科学和数学问题中的应用以及所有数值方法的h7ATI}AI3程序等.涵盖了经典数值分析的全部内容,包括非线性方程的数值解法;线性方程组的数值解法;矩阵特征值与特征向量的数值算法;插值方法;函数最佳逼近;数植积分;数值微分;常微分方程数镇解法等.重点讲述数值分析方法的思想和原理,尽可能避免过深的数学理论和过于繁杂的算法细节.基一J几ItIATLAI3是本书的特色数值计算方法与科学计算软件14IATLAI3相结合,有助于读者更有效地利用IGIATLAI3的超强功能,来处理科学计算问题,有助J--避免那种学过数值计算方法但不能上机解决实际问题的现象发生.
2025/10/25 9:40:40 28.25MB 数值分析
1
利用栈实现科学计算器的连续输入求值,自动选择运算优先级,提示括号的不匹配以及各种输入错误。
2025/9/24 11:08:25 3KB 计算器
1
:给出了一种实现电磁波与目标相互作用现象可视化的方法。
首先用时域有限差分法在数值上模拟电磁波与目标相互作用过程,获取电磁场数据,然后利用MATLAB软件的科学计算可视化功能,将原始数据转换为动态图像。
从而能够观察到电磁波传播、穿透、散射和吸收等现象,为直观地了锯电磁波与目标相互作用的过程提供了一个有效的手段。
2025/9/4 1:09:47 206KB MATLAB
1
java编写的计算器,可以实现基本计算器和科学计算器之间的切换~实现了基本数据结构,包括栈和队列,实现中缀表达式转后缀表达式以及后缀表达式的求值~解压之后的文件夹中有打包之后的jar文件和可执行exe文件,另外里面的Calculator文件夹为源代码,可以直接导入Eclipse,代码使用JDK1.6编译
2025/8/17 6:56:50 33.83MB Java 计算器 Swing
1
这里面包括几篇文章:高性能计算机发展与政策、科学计算的应用现状及发展思考、新兴高性能计算行业应用及发展战略、中国超算产业发展现状分析
2025/7/13 19:57:56 5.51MB 中国高性能计算发展战略 中国HPC
1
实现算术加、减、乘、除等基本运算;
实现三角函数的运算、对数运算、指数运算、阶乘等科学运算;
能实现基础进制转换(二进制、八进制、十进制、十六进制);
实现计算表达式及结果的保存,便于用户检查计算结果;
2025/7/4 20:09:19 941KB qt 计算器 C++ 进制转换
1
天文笔记本iPython笔记本展示了NumPy,matplotlib和我们的宇宙入门简短版本:确保已安装所有适当的依赖项,然后为您的平台运行适当的安装脚本。
Linux安装/构建所需的依赖项。
除Python和virtualenv之外的大多数依赖项都是通过安装脚本自动安装的。
克隆或分叉此仓库。
运行setup.sh创建一个新的virtualenv,安装所有缺少的依赖项,并下载所需的数据集。
经过全面测试的Xubuntu12.10的说明位于INSTALL-xubuntu-12.10中。
视窗安装所需的依赖项。
有关详情,请参见下文。
克隆或分叉此仓库。
运行setup.bat以创建一个新的virtualenv,安装所有缺少的依赖项,并下载所需的数据集。
Windows依赖关系(简单方法)在Windows中获取所有依赖关系的最简单方法是使用专门用于科学计算的Pyt
2025/6/22 12:19:47 3.28MB JupyterNotebook
1

"新建文本文档 (5)_materialsstudio_源码"这一标题揭示了我们正在讨论的是一份与Material Studio相关的源代码文件。
Material Studio是一款由Accelrys(现为Dassault Systèmes生物物理子公司)开发的强大软件,主要用于分子模拟、材料科学以及化学领域的研究。
该软件提供了一整套工具,帮助用户理解并预测材料的结构、性质和行为。
描述中的"实现material studio粉末QPA.pl"指出了我们关注的具体功能或脚本,即粉末量子力学计算(QPA)。
在Material Studio中,量子力学(QM)模块允许用户对材料的电子结构进行精确计算,以预测其化学和物理性质。
粉末QPA可能是指对粉末状材料进行量子力学平均势场(PQAP)计算,这是一种处理多晶材料的方法,适用于无序或非晶态的系统。
粉末QPA计算通常包括以下几个关键步骤:1. **模型构建**:创建粉末材料的模型,这通常涉及选择晶胞参数、确定晶格常数,并考虑颗粒大小和形状的影响。
2. **量子力学设置**:选择合适的量子力学方法,如密度泛函理论(DFT)、Hartree-Fock或更高级的计算方法,以及对应的交换相关泛函。
3. **电荷平衡**:确保模型中的原子带有正确的电荷,以反映实验条件。
4. **计算过程**:运行QM计算,获取粉末样品的电子结构信息,如能带结构、态密度等。
5. **性质分析**:利用获得的电子结构信息,分析材料的光学、电学、机械等性质。
在压缩包中的"新建文本文档.txt"可能是QPA.pl脚本的文本形式,或者包含有关如何运行QPA计算的指令和说明。
这个脚本可能用Perl语言编写,Perl是一种常用的科学计算脚本语言,尤其在处理数据和自动化任务时。
为了深入理解这份源码,我们需要熟悉Perl编程语言,以及Material Studio的API和命令行接口。
此外,对量子力学计算的基本原理和粉末材料的特性有深入理解也是必不可少的。
通过阅读和分析这份源码,我们可以学习到如何自定义和扩展Material Studio的功能,以适应特定的粉末材料研究需求。
这可能涉及到计算参数的调整、结果后处理脚本的编写,甚至可能包括优化计算效率的策略。
2025/6/20 8:28:27 1KB
1

在IT行业中,后端开发是构建应用程序不可或缺的一部分,而Python语言因其简洁明了的语法和丰富的库支持,已经成为后端开发领域中的热门选择。
"backend_python"这个项目可能是一个专门探讨使用Python进行后端开发的资源集合。
让我们深入了解一下Python在后端开发中的应用和相关知识点。
Python作为一门解释型、面向对象的高级编程语言,其特点在于可读性强,易于学习,适合快速开发。
在后端开发中,Python主要通过以下几个方面展现其强大功能:1. **Web框架**:Python拥有许多成熟的Web框架,如Django、Flask、Tornado等。
Django是一个功能齐全的MVC(Model-View-Controller)框架,提供了强大的ORM(对象关系映射)和内置的管理界面,适合大型复杂项目。
Flask则轻量级且灵活,适用于快速开发小型应用。
Tornado则以其异步I/O模型在高并发场景下表现出色。
2. **数据库操作**:Python支持多种数据库,如MySQL、PostgreSQL、SQLite等,通过相应的数据库连接库如pymysql、psycopg2、sqlite3等进行数据交互。
ORM库如SQLAlchemy和Peewee可以进一步简化数据库操作。
3. **API开发**:Python可以方便地创建RESTful API,通过框架如Flask-Restful或Django REST framework,可以快速构建符合HTTP标准的接口,便于前后端分离。
4. **数据处理与分析**:Python的Pandas库为数据分析提供了强大的工具,NumPy和SciPy则在科学计算领域有着广泛的应用。
对于大数据处理,Apache Spark可以通过PySpark接口与Python结合,实现高效的数据处理。
5. **并发与异步**:Python 3.5及以后版本引入了asyncio模块,支持协程和异步编程,使得Python也能处理高并发场景。
6. **部署与运维**:Python的Fabric和Ansible可以用于自动化部署和系统管理,而Gunicorn和uWSGI则是常用的Python WSGI服务器,用于承载Web应用。
7. **微服务架构**:Python在构建微服务方面也十分便捷,利用Flask或Django可以快速构建独立的服务单元。
8. **测试**:Python的unittest、pytest和behave等库提供了全面的测试支持,确保代码质量和稳定性。
9. **安全**:Python的requests库用于安全的HTTP请求,而cryptography和pyOpenSSL库则提供了加密和网络安全相关功能。
10. **持续集成/持续部署(CI/CD)**:Jenkins、GitLab CI/CD、Travis CI等工具都可以与Python项目很好地集成,实现自动化的测试和部署流程。
"backend_python-main"这个文件名可能是项目的主要入口或者源代码目录,包含了项目的主程序、配置、路由、模型等核心部分。
通过对这个目录的深入研究,可以更具体地了解项目如何运用以上知识点进行实际的后端开发。
Python在后端开发中的应用广泛且深入,无论是在小型快速原型还是大型企业级应用中,都能发挥其独特的优势。
2025/6/19 23:26:33 12KB
1
共 106 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡