统计分析软件SPSS的图书源代码--〉《SPSS在统计分析中的应用》,作者:朱建平等,印刷日期:2010-9-29源代码第二章~第十五章,文件大小443kb。
图书目录第1章SPSS软件概述1.1SPSS软件的基本特点和功能 11.2SPSS软件的安装、启动与退出 21.2.1SPSS软件的安装 21.2.2SPSS软件的启动 21.2.3SPSS软件的退出 31.3SPSS操作环境介绍 31.3.1SPSS软件的3个常用窗口 31.3.2SPSS菜单和工具栏 51.3.3SPSS对话框的基本操作方式 5第2章SPSS数据文件管理 72.1SPSS数据文件的结构 72.1.1SPSS数据文件的特点 72.1.2SPSS变量的属性 72.2建立一个数据文件 102.3读取外部数据 112.3.1读取Excel文件 122.3.2读取ASCII码文件 122.4SPSS数据的编辑和保存 152.4.1Edit菜单中的数据编辑功能 152.4.2Data菜单中的数据编辑功能 162.4.3SPSS数据的保存 16第3章数据整理 173.1数据排序 173.2数据排秩 183.3数据转置 193.4选择观测的子集 203.5数据分类汇总 223.6合并数据文件 233.6.1纵向合并(AddCases) 233.6.2横向合并(AddVariables) 243.7数据拆分 263.8计算新变量 283.9数据重新编码 303.10数据分组 313.11数据标准化 32第4章统计描述 344.1基本概念和原理 344.1.1频数分布 344.1.2集中趋势指标 344.1.3离散程度指标 354.1.4反映分布形态的描述性指标 354.2频数分析 364.2.1操作步骤 364.2.2实例结果分析 384.3描述性统计量 394.3.1操作步骤 394.3.2实例结果分析 404.4探索性数据分析 414.4.1操作步骤 424.4.2实例结果分析 444.4.3方差齐性检验的实例 46第5章统计推断 475.1统计推断概述 475.1.1参数估计 475.1.2假设检验 485.2单样本t检验 495.2.1理论与方法 495.2.2操作步骤 495.2.3实例结果分析 505.3两独立样本t检验 515.3.1理论与方法 515.3.2操作步骤 515.3.3实例结果分析 525.4配对样本t检验 535.4.1理论与方法 535.4.2操作步骤 545.4.3实例结果分析 54第6章方差分析 566.1方差分析概述 566.2单因素单变量方差分析 566.2.1理论和方法 566.2.2操作步骤 586.2.3实例结果分析 606.3多因素单变量方差分析 626.3.1理论与方法 626.3.2固定效应、随机效应和协变量 646.3.3操作步骤 656.3.4实例结果分析 676.3.5不考虑交互效应的多因素方差分析 706.3.6引入协变量的多因素方差分析 70第7章非参数检验 727.1非参数检验概述 727.2卡方检验(检验) 727.2.1理论与方法 727.2.2操作步骤 737.2.3实例结果分析 747.3二项分布检验 757.3.1理论与方法 757.3.2操作步骤 757.3.3实例结果分析 767.4游程检验 777.4.1理论与方法 777.4.2操作步骤 777.4.3实例结果分析 787.5单样本K-S检验 797.5.1理论与方法 797.5.2操作步骤 797.5.3实例结果分析 807.6两独立样本检验 807.6.1理论与方法 807.6.2操作步骤 827.6.3实例结果分析 827.7多独立样本检验 847.7.1理论与方法 847.7.2操作步骤 857.7.3实例结果分析 857.8两配对样本检验 877.8.1理论与方法 877.8.2操作步骤 887.8.3实例结果分析 887.9多配对样本检验 907.9.1
2025/6/24 16:07:56 444KB 统计学 统计分析软件 SPSS
1
主要介绍数据仓库和数据挖掘技术的基本原理和应用方法,全书共分为12章,主要内容包括数据仓库的概念和体系结构、数据仓库的数据存储和处理、数据仓库系统的设计与开发、关联规则、数据分类、数据聚类、贝叶斯网络、粗糙集、神经网络、遗传算法、统计分析、文本和Web挖掘
2025/3/1 9:11:45 53.31MB 数据仓库
1
基于邻域超图的不平衡数据分类新算法
2025/3/1 1:31:35 1.37MB 研究论文
1
证券期货业数据分类分级指引,详细介绍了分类分级的方法和过程
2024/10/25 7:07:06 1.49MB 分类分级
1
深层学习专业吴安(AndrewNg),deeplearning.ia,库拉教学大纲+Course1:NeuralNetworksandDeepLearning第一周第1课:深度学习简介第二周第2课:逻辑回归作为神经网络第3课:Python和向量化实验1:Numpy的Python基础作业1:具有神经网络心态的Logistic回归第三周第4课:浅层神经网络作业2:具有一个隐藏层的平面数据分类第四周讲座5:深度神经网络作业3:逐步建立您的深度神经网络作业4:深度神经网络应用+Course2:ImprovingDeepNeuralNetworks:HyperparameterTuning,RegularizationandOptimization第五周第6课:设置机器学习应用程序第7课:规范化您的神经网络第8
2024/9/26 2:56:01 30.76MB JupyterNotebook
1
Vc++的程序,简单的bp算法实现数据分类。
2024/8/25 10:56:13 22KB bp classification
1
本书全面介绍了数据挖掘的理论和方法,着重介绍如何用数据挖掘知识解决各种实际问题,涉及学科领域众多,适用面广。
,书中涵盖5个主题:数据、分类、关联分析、聚类和异常检测。
除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。
目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。
,本书特色,·包含大量的图表、综合示例和丰富的习题。
,·不需要数据库背景,只需要很少的统计学或数学背景知识。
,·网上配套教辅资源丰富,包括ppt、习题解答、数据集等。
2024/8/8 5:39:31 67.61MB 数据挖掘导论
1
kddtrain2018.txt:100predictiveattributesA1,A2,...,A100和一个类标C,每一个属性是介于0~1之间的浮点数,类标C有三个可能的{0,1,2},给定的数据文件有101列,6270行。
kddtest2018.txt:500行
2024/7/1 9:54:45 2MB 数据
1
利用感知器算法进行鸢尾花数据分类,还包含一个异或算法,可以解决非线性分类问题
2024/6/13 10:07:08 2KB matlab
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
共 54 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡