首页 开发技术 其它     /    Coursera-深度学习-专业化-源码

Coursera-深度学习-专业化-源码

上传者: weixin_42157188 | 上传时间:2024/9/26 2:56:01 | 文件大小:30.76MB | 文件类型:ZIP
Coursera-深度学习-专业化-源码
深层学习专业吴安(AndrewNg),deeplearning.ia,库拉教学大纲+Course1:NeuralNetworksandDeepLearning第一周第1课:深度学习简介第二周第2课:逻辑回归作为神经网络第3课:Python和向量化实验1:Numpy的Python基础作业1:具有神经网络心态的Logistic回归第三周第4课:浅层神经网络作业2:具有一个隐藏层的平面数据分类第四周讲座5:深度神经网络作业3:逐步建立您的深度神经网络作业4:深度神经网络应用+Course2:ImprovingDeepNeuralNetworks:HyperparameterTuning,RegularizationandOptimization第五周第6课:设置机器学习应用程序第7课:规范化您的神经网络第8 本软件ID:15492568

文件下载

资源详情

[{"title":"(80个子文件30.76MB)Coursera-深度学习-专业化-源码","children":[{"title":"Coursera-Deep-Learning-Specialization-master","children":[{"title":"1-Neural_Networks_and_Deep_Learning","children":[{"title":"Certificate-C1_Neural_Networks_and_Deep_Learning.jpg <span style='color:#111;'>480.23KB</span>","children":null,"spread":false},{"title":"week1","children":[{"title":"Lecture1-Introduction_to_Deep_Learning.pdf <span style='color:#111;'>445.80KB</span>","children":null,"spread":false}],"spread":true},{"title":"week2","children":[{"title":"assignment1","children":[{"title":"images","children":[{"title":"image2.png <span style='color:#111;'>150.82KB</span>","children":null,"spread":false},{"title":"LogReg_kiank.png <span style='color:#111;'>187.10KB</span>","children":null,"spread":false},{"title":"my_image.jpg <span style='color:#111;'>621.36KB</span>","children":null,"spread":false},{"title":"image1.png <span style='color:#111;'>259.48KB</span>","children":null,"spread":false},{"title":"gargouille.jpg <span style='color:#111;'>302.91KB</span>","children":null,"spread":false},{"title":"cat_in_iran.jpg <span style='color:#111;'>587.00KB</span>","children":null,"spread":false},{"title":"la_defense.jpg <span style='color:#111;'>331.71KB</span>","children":null,"spread":false},{"title":"my_image2.jpg <span style='color:#111;'>92.23KB</span>","children":null,"spread":false}],"spread":true},{"title":"Logistic_Regression_with_a_Neural_Network_mindset_v6a.ipynb <span style='color:#111;'>298.38KB</span>","children":null,"spread":false},{"title":"lr_utils.py <span style='color:#111;'>882B</span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"train_catvnoncat.h5 <span style='color:#111;'>2.45MB</span>","children":null,"spread":false},{"title":"test_catvnoncat.h5 <span style='color:#111;'>602.50KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"lab1","children":[{"title":"images","children":[{"title":"Sigmoid.png <span style='color:#111;'>66.79KB</span>","children":null,"spread":false},{"title":"image2vector_kiank.png <span style='color:#111;'>244.67KB</span>","children":null,"spread":false},{"title":"image2vector.png <span style='color:#111;'>597.41KB</span>","children":null,"spread":false}],"spread":true},{"title":"Python_Basics_With_Numpy_v3a.ipynb <span style='color:#111;'>39.14KB</span>","children":null,"spread":false}],"spread":true},{"title":"Lecture2-Logistic_Regression_as_a_Neural_Network.pdf <span style='color:#111;'>623.95KB</span>","children":null,"spread":false},{"title":"Lecture3-Python_and_Vectorization.pdf <span style='color:#111;'>417.17KB</span>","children":null,"spread":false}],"spread":true},{"title":"week4","children":[{"title":"assignment4","children":[{"title":"images","children":[{"title":"imvector.png <span style='color:#111;'>198.13KB</span>","children":null,"spread":false},{"title":"my_image.jpg <span style='color:#111;'>92.23KB</span>","children":null,"spread":false},{"title":"imvectorkiank.png <span style='color:#111;'>372.99KB</span>","children":null,"spread":false},{"title":"LlayerNN_kiank.png <span style='color:#111;'>278.56KB</span>","children":null,"spread":false},{"title":"2layerNN_kiank.png <span style='color:#111;'>254.53KB</span>","children":null,"spread":false}],"spread":true},{"title":"Deep_Neural_Network_-_Application_v8.ipynb <span style='color:#111;'>1.80MB</span>","children":null,"spread":false},{"title":"dnn_app_utils_v3.py <span style='color:#111;'>14.43KB</span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"train_catvnoncat.h5 <span style='color:#111;'>2.45MB</span>","children":null,"spread":false},{"title":"test_catvnoncat.h5 <span style='color:#111;'>602.50KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Lecture5-Deep_Neural_Network.pdf <span style='color:#111;'>1.10MB</span>","children":null,"spread":false},{"title":"assignment3","children":[{"title":"images","children":[{"title":"imvector.png <span style='color:#111;'>198.13KB</span>","children":null,"spread":false},{"title":"mn_backward.png <span style='color:#111;'>217.55KB</span>","children":null,"spread":false},{"title":"model_architecture_kiank.png <span style='color:#111;'>158.94KB</span>","children":null,"spread":false},{"title":"relu.png <span style='color:#111;'>35.10KB</span>","children":null,"spread":false},{"title":"structure.png <span style='color:#111;'>1.10MB</span>","children":null,"spread":false},{"title":"nm_backward.png <span style='color:#111;'>870.66KB</span>","children":null,"spread":false},{"title":"backpass.png <span style='color:#111;'>101.23KB</span>","children":null,"spread":false},{"title":"backprop.png <span style='color:#111;'>169.89KB</span>","children":null,"spread":false},{"title":"linearback_kiank.png <span style='color:#111;'>55.52KB</span>","children":null,"spread":false},{"title":"finaloutline.png <span style='color:#111;'>556.92KB</span>","children":null,"spread":false},{"title":"2layerNN.png <span style='color:#111;'>420.39KB</span>","children":null,"spread":false},{"title":"backprop_kiank.png <span style='color:#111;'>100.50KB</span>","children":null,"spread":false},{"title":"NlayerNN.png <span style='color:#111;'>482.43KB</span>","children":null,"spread":false},{"title":"n_model_backward.png <span style='color:#111;'>761.16KB</span>","children":null,"spread":false},{"title":"model_architecture2.png <span style='color:#111;'>216.91KB</span>","children":null,"spread":false}],"spread":false},{"title":"Building_your_Deep_Neural_Network_Step_by_Step_v8a.ipynb <span style='color:#111;'>54.82KB</span>","children":null,"spread":false},{"title":"testCases_v4a.py <span style='color:#111;'>6.49KB</span>","children":null,"spread":false},{"title":"dnn_utils_v2.py <span style='color:#111;'>1.71KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'>70B</span>","children":null,"spread":false},{"title":"notes","children":[{"title":"Standard_notations_for_Deep_Learning.pdf <span style='color:#111;'>255.66KB</span>","children":null,"spread":false}],"spread":true},{"title":"week3","children":[{"title":"Lecture4-Shallow_neural_networks.pdf <span style='color:#111;'>830.60KB</span>","children":null,"spread":false},{"title":"assignment2","children":[{"title":"images","children":[{"title":"grad_summary.png <span style='color:#111;'>665.91KB</span>","children":null,"spread":false},{"title":"sgd.gif <span style='color:#111;'>40.69KB</span>","children":null,"spread":false},{"title":"sgd_bad.gif <span style='color:#111;'>62.51KB</span>","children":null,"spread":false},{"title":"classification_kiank.png <span style='color:#111;'>135.85KB</span>","children":null,"spread":false}],"spread":true},{"title":"testCases_v2.py <span style='color:#111;'>3.90KB</span>","children":null,"spread":false},{"title":"planar_utils.py <span style='color:#111;'>2.20KB</span>","children":null,"spread":false},{"title":"Planar_data_classification_with_onehidden_layer_v6c.ipynb <span style='color:#111;'>535.21KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Certificate-C1_Neural_Networks_and_Deep_Learning.pdf <span style='color:#111;'>359.79KB</span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'>1.06KB</span>","children":null,"spread":false},{"title":"2-Improving_Deep_Neural_Networks_Hyperparameter_Tuning_Regularization_and_Optimization","children":[{"title":"week1","children":[{"title":"assignment6","children":[{"title":"testCases.py <span style='color:#111;'>4.27KB</span>","children":null,"spread":false},{"title":"images","children":[{"title":"dropout2_kiank.mp4 <span style='color:#111;'>2.35MB</span>","children":null,"spread":false},{"title":"dropout1_kiank.mp4 <span style='color:#111;'>1.63MB</span>","children":null,"spread":false},{"title":"field_kiank.png <span style='color:#111;'>120.74KB</span>","children":null,"spread":false}],"spread":true},{"title":"reg_utils.py <span style='color:#111;'>10.46KB</span>","children":null,"spread":false},{"title":"Regularization_v2a.ipynb <span style='color:#111;'>262.02KB</span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"data.mat <span style='color:#111;'>5.90KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Lecture7-Regularizing_your_neural_network.pdf <span style='color:#111;'>430.53KB</span>","children":null,"spread":false},{"title":"Lecture8-Setting_up_your_optimization_problem.pdf <span style='color:#111;'>365.25KB</span>","children":null,"spread":false},{"title":"assignment7","children":[{"title":"testCases.py <span style='color:#111;'>521B</span>","children":null,"spread":false},{"title":"images","children":[{"title":"dictionary_to_vector.png <span style='color:#111;'>121.78KB</span>","children":null,"spread":false},{"title":"1Dgrad_kiank.png <span style='color:#111;'>173.42KB</span>","children":null,"spread":false},{"title":"NDgrad_kiank.png <span style='color:#111;'>176.37KB</span>","children":null,"spread":false},{"title":"handforward_kiank.png <span style='color:#111;'>2.14MB</span>","children":null,"spread":false},{"title":"handbackward_kiank.png <span style='color:#111;'>1.67MB</span>","children":null,"spread":false}],"spread":true},{"title":"gc_utils.py <span style='color:#111;'>1.92KB</span>","children":null,"spread":false},{"title":"Gradient_Checking_v1.ipynb <span style='color:#111;'>26.31KB</span>","children":null,"spread":false}],"spread":true},{"title":"Lecture6-Setting_up_your_Machine_Learning_Application.pdf <span style='color:#111;'>258.94KB</span>","children":null,"spread":false},{"title":"assignment5","children":[{"title":"init_utils.py <span style='color:#111;'>7.51KB</span>","children":null,"spread":false},{"title":"Initialization.ipynb <span style='color:#111;'>262.65KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明