嵌入式系统设计领域经典之作嵌入式系统设计与实践完整高清版提升嵌入式软件设计能力
2026/1/15 17:41:08 6.92MB 嵌入式
1
针对当前车载定位终端数据交互实时性差以及程序运行不稳定的问题提出了一种基于ARM处理器和uC/OS-II操作系统的车载定位终端的设计方案。
在32位高速ARM处理器上移植并应用基于优先级的抢占式实时多任务嵌入式操作系统μC/OS-II以实现数据交互的高实时性和运行的可靠性,满足车载定位终端对数据处理速度以及可靠性的要求。
1
LittlevGL是一个免费的开源图形库,提供了创建嵌入式GUI所需要的一切易于使用的图形元素,具有漂亮的视觉效果和低内存占用。
具有功能强大的单元块,对输入设备支持较完善,同时具有低内存,采用C编写具有比较好的兼容性。
中英文档是对LittlevGL文档的简单翻译,有利于快速了解LittlevGL各功能模块的应用。
2026/1/15 13:01:12 4.04MB pdf 中文文档 Little
1
STM32F1系列是意法半导体(STMicroelectronics)推出的基于ARMCortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计。
HAL库(HardwareAbstractionLayer,硬件抽象层)是ST为简化STM32开发而推出的一套高级库函数,它将底层的寄存器操作进行了封装,使得开发者可以更专注于应用程序的逻辑,而不是底层硬件细节。
**STM32F1HAL库介绍**STM32F1HAL库提供了丰富的API函数,涵盖了中断管理、时钟配置、GPIO、ADC、DAC、TIM定时器、串口通信、I2C、SPI、CAN等多种功能模块。
HAL库的使用显著提高了开发效率,降低了代码的复杂性,并且具有良好的可移植性。
HAL库的设计原则是将硬件特性抽象成统一的接口,这样开发者在不同的STM32系列之间切换时,只需要修改少量代码即可。
**HAL库的优势**1.**易用性**:HAL库通过结构体和函数指针来管理外设,简化了初始化和操作流程。
2.**移植性**:由于抽象了硬件细节,HAL库可以在STM32的不同系列之间轻松移植。
3.**错误检测**:HAL库内置错误处理机制,能及时发现并报告错误状态。
4.**实时性能**:虽然HAL库增加了额外的层,但经过优化后的库函数对实时性能的影响较小。
**底层驱动(LLDriver)**底层驱动是介于HAL库和硬件寄存器之间的轻量级库,提供直接访问外设寄存器的高效方式。
相比于HAL库,LL驱动更加轻便,对于对性能有极高要求的应用场景,或者需要节省内存的情况,LL驱动是更好的选择。
LL驱动同样具有很好的可读性和可移植性,但需要开发者对STM32硬件有更深入的理解。
**STM32F1HAL库描述与底层驱动中文版文档**"用户手册-STM32F1HAL库描述与底层驱动中文版.pdf"是一份详细的中文指南,涵盖STM32F1系列HAL库和底层驱动的使用方法、配置步骤以及常见问题解答。
通过阅读这份文档,开发者可以快速掌握如何在STM32F1项目中使用HAL库和底层驱动,包括设置、初始化、操作外设等关键步骤。
**英文版文档**"用户手册-DescriptionofSTM32F1HALandlow-layerdrivers英文版.pdf"是原始的官方英文文档,对于需要更深入理解和研究的开发者来说,这份文档提供了更详细的技术信息和规格说明。
STM32F1的HAL库和底层驱动为开发者提供了丰富的工具,帮助他们快速、高效地开发基于STM32F1的嵌入式系统。
无论是新手还是经验丰富的工程师,都能从中找到适合自己的开发方式。
通过学习提供的用户手册,开发者可以更好地理解和利用这些库,提升开发效率,降低开发难度。
2026/1/14 9:25:43 9.91MB stm32 HAL库
1
《自己动手写CPU(含CD光盘1张)》使用VerilogHDL设计实现了一款兼容MIPS32指令集架构的处理器——OpenMIPS。
OpenMIPS处理器具有两个版本,分别是教学版和实践版。
教学版的主要设计思想是尽量简单,处理器的运行情况比较理想化,与教科书相似,便于使用其进行教学、学术研究和讨论,也有助于学生理解课堂上讲授的知识。
实践版的设计目标是能完成特定功能,发挥实际作用。
《自己动手写CPU(含CD光盘1张)》分为三篇。
第一篇是理论篇,介绍了指令集架构、VerilogHDL的相关知识。
第二篇是基础篇,采用增量模型,实现了教学版OpenMIPS处理器。
首先实现了仅能执行一条指令的处理器,从这个最简单的情况出发,通过依次添加,实现逻辑操作指令、移位操作指令、空指令、移动操作指令、算术操作指令、转移指令、加载存储指令、协处理器访问指令、异常相关指令,最终实现了教学版OpenMIPS处理器。
第三篇是进阶篇,通过为教学版OpenMIPS添加Wishbone总线接口,从而实现了实践版OpenMIPS处理器,并与SDRAM控制器、GPIO模块、Flash控制器、UART控制器、Wishbone总线互联矩阵等模块组成一个小型SOPC,然后下载到FPGA芯片以验证实现效果,最后为实践版OpenMIPS处理器移植了嵌入式实时操作系统μC/OS-II。
《自己动手写CPU(含CD光盘1张)》适合计算机专业的学生、FPGA开发人员、处理器设计者、嵌入式系统应用开发工程师、MIPS平台开发人员以及对处理器内部的实现感兴趣的读者阅读,也可以作为高等院校计算机原理、计算机体系结构等课程的实践参考书。
2026/1/13 20:10:41 103.51MB 微处理器
1
诸如相变存储器(PCM)和忆阻器之类的非易失性存储器正在积极研究中由于其特性,可作为嵌入式系统中基于DRAM的主存储器的替代品,包括低功耗和高密度。
虽然PCM是最有前途的候选人之一商用产品可用,其有限的写入耐久性极大地降低了其采用率。
作为主存储器是访问量最大的组件之一,延长PCM的寿命至关重要。
在本文中,我们介绍了可感知写活动的页表管理(WAPTM),这是一种简单而有效的方法页表管理方案,用于通过重新设计系统软件来减少不必要的写入和利用硬件提供的可识别写入活动的功能。
我们在GoogleAndroid中实现了WAPTM基于ARM体系结构,并使用真实的Android应用程序对其进行了评估。
实验结果表明WAPTM可以显着减少页表中的写入次数,证明了WAPTM的可行性和潜力通过减少OS级别的写操作来延长基于PCM的主存储器的寿命。
2026/1/13 18:18:35 1.37MB Phase change memory; non-volatile
1
STM32是一款基于ARMCortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产,广泛应用于各种嵌入式系统设计,包括飞行控制系统、机器人、物联网设备等。
在本项目“S.BUSSTM32解析程序”中,我们将讨论如何利用STM32处理器解析FUTABA的S.BUS通信协议,并实现PWM波输出。
S.BUS是FUTABA公司推出的一种用于遥控模型系统的多通道双向数字通信协议。
相比于传统的PPM(PulsePositionModulation)信号,S.BUS提供了更高的数据传输速率、更稳定的信号质量以及更好的抗干扰能力。
它能支持最多18个通道的数据传输,同时还能提供故障检测功能,增强了系统的可靠性和安全性。
在STM32中解析S.BUS协议,首先需要理解S.BUS协议帧的结构。
一个完整的S.BUS帧通常包含起始位、16个通道数据、奇偶校验位和结束位。
每个通道数据以11位的二进制格式表示,其中前10位用于编码通道值,第11位为通道标志位。
STM32需要通过串行接口(如USART或SPI)接收这些连续的数字信号,并进行解码处理。
解析过程通常分为以下步骤:1.接收数据:STM32的串行接口配置为接收模式,监听S.BUS信号线上的数据。
可以使用中断服务程序来捕获每个数据位的到来。
2.检测起始位:S.BUS帧的起始位是一个低电平,STM32需要识别这个特定的信号边缘,作为帧开始的标志。
3.解码通道数据:接着,STM32逐位读取并解码16个通道的11位数据,将它们转换成对应的模拟控制值。
每个通道的值范围通常是1000到2000,代表伺服电机或马达的最小到最大角度或速度。
4.计算奇偶校验:S.BUS协议还包括一个奇偶校验位,用于检查数据传输的正确性。
STM32需要计算接收到的所有数据位的奇偶性,并与接收到的校验位进行比较。
5.检测结束位:S.BUS帧以高电平的结束位结束。
当检测到该高电平时,STM32知道一帧数据已经完整接收。
6.错误处理:如果在接收过程中发现错误,如奇偶校验不匹配或数据帧格式错误,STM32可能需要采取重传策略或忽略错误帧。
7.PWM波输出:解析完S.BUS数据后,STM32会根据每个通道的值生成相应的PWM波。
这通常通过定时器和比较单元实现,通过设置定时器的预装载值和比较值来调整PWM脉冲的宽度,从而控制输出的电压或电流。
在实际应用中,FUTABASUBS成功版本的代码可能包含了一些关键函数,如`sbus_init()`用于初始化串口和相关寄存器,`sbus_decode()`用于解码接收到的S.BUS数据,以及`pwm_generate()`用于生成PWM波。
这些函数的实现细节将直接影响到整个系统的性能和稳定性。
"S.BUSSTM32解析程序"项目涉及到STM32微控制器的串行通信、数据解析、错误处理以及PWM生成等多个关键知识点,对于理解和开发遥控模型系统具有重要的实践意义。
通过深入学习和实践,开发者可以掌握高级遥控系统的设计技术。
2026/1/12 9:22:41 2.72MB S.BUS SBUS
1
在嵌入式系统开发领域,STM32微控制器系列由于其高性能和灵活性被广泛应用于各类项目中。
特别是STM32F103C8T6这款产品,由于其良好的性能价格比,成为了许多爱好者和专业开发者的首选。
在许多应用场景中,STM32F103C8T6需要与外部设备进行通信,其中一种常见的通信方式是通过sbus信号。
sbus信号是一种用于遥控模型和飞行控制器的通信协议,它使用串行通信方式,并能够在一个信号线上同时传输多路控制信号。
sbus协议的这一特点使得它非常适合用于需要大量控制通道的应用,如无人机(UAV)遥控等。
然而,对于开发者来说,解析sbus信号并将其转换为STM32F103C8T6可以识别和处理的信号,是一项必须面对的挑战。
为了简化开发者的工作,已经有人编写了sbus解析处理代码,并将其封装为软件插件,方便在STM32F103C8T6项目中使用。
这份代码通过高效的算法处理sbus信号,将其中的各个通道的数据分离出来,并转换为相应的控制命令。
代码中可能包括了对sbus信号的接收、去噪、解码等一系列处理过程,最终将解码后的数据格式化为适合STM32F103C8T6处理的形式。
由于代码中有详细的注释,即使是初学者也能较容易理解其工作原理和结构。
注释不仅包括了每个函数的功能描述,还可能涉及关键算法的解释,以及如何将sbus信号的每个通道映射到STM32F103C8T6的各个控制接口上。
此外,代码可能还包含了一些库文件(Libraries),这些库文件是用于支持sbus解析的核心功能,它们可能包括对STM32F103C8T6硬件特性的调用和封装,以便开发者可以更加便捷地使用这些功能。
在项目(Project)文件夹中,可以找到完整的项目文件,这包括了源代码文件、工程文件和一些必要的配置文件。
开发者可以直接利用这些项目文件来创建自己的STM32F103C8T6工程,或者将这些文件导入到现有的工程中。
而对于那些希望通过图形化界面进行操作的开发者,他们还可以在文档(Doc)文件夹中找到使用说明,这些文档通常会解释如何配置代码以适应特定的开发环境和硬件设置。
这份sbus解析处理代码对于使用STM32F103C8T6微控制器的项目来说,是一份非常有价值的资源。
它不仅提供了将sbus信号转换为STM32F103C8T6可用信号的算法实现,而且还通过注释和文档使得整个处理过程变得易于理解。
这份资源的提供大大降低了开发者的工作量,使得他们能够将精力更多地投入到项目的创意和创新上,而不是耗费在基础性的通信协议处理上。
2026/1/12 9:06:30 8.78MB stm32
1
在windows下用EVC4.0开发的一个嵌入式画图板,支持打开BMP格式的文件及保存为BMP格式的文件
2026/1/9 17:05:42 84KB EVC4.0 画图板
1
嵌入式系统设计师历年考试题+考纲+笔记pdf,希望能够帮助软考的同学…………………………………………………………
2026/1/9 5:52:04 3.34MB 嵌入式
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡