Matlab功率谱估计的详尽分析——绝对原创功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
ARMA谱估计叫做自回归移动平均谱估计,它是一种模型化方法。
由于具有广泛的代表性和实用性,ARMA谱估计在近十几年是现代谱估计中最活跃和最重要的研究方向之一。
二:AR参数估计及其SVD—TLS算法。
谱分析方法要求ARMA模型的阶数和参数以及噪声的方差已知.然而这类要求在实际中是不可能提供的,即除了一组样本值x(1),x(2),…,x(T)以供利用(有时会有一定的先验知识)外,再没有其它可用的数据.因此必须估计有关的阶数和参数,以便获得谱密度的估计.在ARMA定阶和参数之估计中,近年来提出了一些新算法,如本文介绍的SVD—TLS算法便是其中之一。
三:实验结果分析和展望1,样本数多少对估计误差的影响。
(A=[1,0.8,-0.68,-0.46])图1上部分为N=1000;
下部分为取相同数据的前N=50个数据产生的结果。
图1N数不同:子图一N=1000,子图二N=200,子图三N=50由图可知,样本数在的多少,在对功率谱估计的效果上有巨大的作用,特别在功率谱密度函数变化剧烈的地方,必须有足够多的数据才能完整的还原原始功率谱密度函数。
2,阶数大小对估计误差的影响。
A=[1,-0.9,0.76]A=[1,-0.9,0.76,-0.776]图二阶数为二阶和三阶功率密度函数图A=[1,-0.9,0.86,-0.96,0.7]A=[1,-0.9,0.86,-0.96,0.7,-0.74]图三阶数为三阶和四阶功率密度函数图如图所示,阶数相差不是很大时,并不能对结果产生较大的影响。
但是阶数太低,如图二中二阶反而不能很好的估计出原始值。
3,样本点分布对估计误差对于相同的A=[1,-0.9,0.86,-0.96,0.7];
样本的不同,在估计时的误差是不可避免的。
因此,我们在取得样本时,应该尽可能的减少不必要的误差。
图四:不同的样本得到不同的估计值4,奇异值的阈值判定范围不同对结果的影响。
上图是取奇异值的阈值大于等于0.02,而下图是取阈值大于等于0.06,显然在同种数据下,阈值的选取和最终结果有密切关系。
由于系数矩阵和其真实值的逼近的精确度取决于被置零的那些奇异值的平方和。
所以选取太小,导致阶数增大,选取太大会淘汰掉真实的系数。
根据经验值,一般取0.05左右为最佳。
2025/4/16 9:53:51 1KB arma matlab
1
对一般时间序列进行平稳化及零均值处理,然后进行模型识别,采用残差方差图定阶,最后进行AR模型参数估计。
2KB AR
1
使用Python、arima进行时间序列预测(1)判断时间序列是否是平稳白噪声序列,若不是进行平稳化(2)本实例数据带有周期性,因此先进行一阶差分,再进行144步差分(3)看差分序列的自相关图和偏自相关图,差分后的而序列为平稳序列(4)模型定阶,根据aic,bic,hqic(5)预测,确定模型后预测(5)还原,由于预测时用的差分序列,得到的预测值为差分序列的预测值,需要将其还原
2023/6/1 13:09:19 12KB arima 时间序列预测 python
1
dingjiear模子定阶次aic原则
2023/4/14 0:53:41 273B ar模型定阶
1
本人系统辨识课程的全部代码以及报告报告里有所有算法原理。
内容如下:第一章 最小二乘法 11.1 问题重述 11.2 最小二乘法 11.2.1 基本最小二乘法 11.2.2 不需矩阵求逆的最小二乘法 21.2.3 递推最小二乘法 41.3 辅助变量法 61.3.1 一次辅助变量法 61.3.2 递推辅助变量法 71.4 广义最小二乘法 91.4.1 一次广义最小二乘法 91.4.2 递推广义最小二乘法 101.5 夏式法 121.5.1 夏式偏差修正法 121.5.2 夏式改良法 131.5.3 递推夏式法 131.6 增广矩阵法 161.7 自编方法-多阶段最小二乘法 181.8 噪声特性分析 191.8.1 时域波形 201.8.2 均值分析 201.8.3 方差分析 211.8.4 自相关函数分析 211.8.5 功率谱密度分析 221.8.6 总结 22第二章 极大似然法 23第三章 方法比较 253.1 问题重述 253.2 各方法精度对比 253.3 各方法计算量对比 253.4 噪声方差的影响 263.5 白噪声和有色噪声对辨识的影响 27第四章 系统模型阶次的辨识 284.1 问题重述 284.2 按残差方差定阶 284.2.1 按估计误差方差最小定阶 284.2.2 F检验法 294.3 按AKAIKE信息原则定阶 294.4 按残差白色定阶 304.5 噪声对定阶的影响 314.6 三种方法的优劣及有效性 31附录 32
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡