介绍一种用Matlab软件编程实现图像联合变换相关识别的方法。
该方法利用Matlab软件的科学计算功能和强大的绘图功能,采用光学图像联合变换相关原理能快速实现图像的识别与筛选,并得到运算结果的二维与三维图,有利于实时图像判别,为图像识别的光机电一体化和小型化提供了理论依据和实现手段。
相关程序,并附相关文章
2024/12/23 16:08:14 1.32MB 相关识别; 联合变换器; M atlab
1
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是图像处理、分析和机器视觉领域的一本经典教材,第3版提供了高清英文原版的PDF版本。
这本书深入浅出地探讨了图像处理的基础理论和应用,是计算机视觉、电子工程、生物医学工程等相关专业学生和研究人员的重要参考书。
我们要理解图像处理的基本概念。
图像处理涉及到对数字图像进行各种操作,以改善其质量、提取有用信息或进行分析。
这包括图像增强、去噪、分割和复原等技术。
例如,图像增强通过调整亮度、对比度来优化视觉效果;
去噪则通过滤波器去除图像中的噪声;
图像分割将图像区域划分为不同的对象或类别,便于进一步分析。
机器视觉则是图像处理的一个重要应用领域,它使计算机能够“看”并理解图像。
在《MilanSonka》一书中,读者可以学习到如何构建和应用机器视觉系统。
这包括特征检测(如边缘检测、角点检测)、模板匹配、模式识别和物体识别等技术。
这些技术在自动驾驶、无人机导航、工业自动化和医疗诊断等领域有着广泛应用。
此外,书中还涵盖了与机器学习相关的主题,如监督学习和无监督学习,它们在图像分类、目标检测和图像识别任务中至关重要。
支持向量机(SVM)、神经网络、深度学习框架(如卷积神经网络CNN)等现代机器学习方法也是书中讨论的重点。
深度学习,尤其是深度卷积网络,已经在图像处理和计算机视觉领域取得了突破性进展,极大地推动了人脸识别、图像生成和自动驾驶等技术的发展。
书中还涉及到了图像分析,这是对图像内容进行理解和解释的过程。
这包括图像理解、场景分析和行为识别。
图像理解需要从图像中提取高级语义信息,比如识别出图像中的物体、场景和事件。
场景分析则涉及环境的理解,例如确定图像中的背景、前景和物体之间的关系。
行为识别则关注动态图像中的动作和活动,如行人跟踪和运动分析。
书中还涵盖了实际应用中的算法实现和评估方法,这对于任何从事图像处理和机器视觉研究的人来说都是必不可少的知识。
实验部分通常会介绍如何使用编程语言(如MATLAB或Python)实现所讨论的算法,并提供数据集和代码示例。
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是一部全面覆盖图像处理、分析和机器视觉的教材,无论你是初学者还是经验丰富的专业人士,都能从中受益匪浅。
通过深入学习这本书,你可以掌握图像处理的基本原理,理解机器视觉的核心技术,并了解如何将这些知识应用于实际项目中。
2024/12/18 9:29:46 26.8MB 图像处理
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
基于FPGA的图像识别常用算法的设计,Sobel边缘检测,肤色识别算法,腐蚀膨胀算法,中值滤波算法,均值滤波
1
现在图像处理技术已经应用于多个领域当中,其中,纸币识别,车牌识别,文字识别和指纹识别已为大家所熟悉。
图像分割是一种重要的图像技术,它不仅得到了人们的广泛重视和研究,也在实际中得到了大量的应用。
它是处理图像的基本问题之一,是图像处理图像分析的关键步骤。
图像识别的基础是图像分割,其作用是把反映物体真实情况的,占据不同区域的,具有不同性质的目标区分开来,并形成数字特性。
关于图像分割的方法已有上千种,本文将介绍几种主流的方法,并分析各自的特性,利用LabVIEW平台实现两种阈值方法分割图像,展现实验现象,比较两种方法的处理结果。
2024/10/6 3:39:13 899KB labvie 图像分割 二值化
1
本人已经不做这个方向了,特拿出来与大家共享。
内含:源代码(一个能够在PC上识别车牌图片的完成系统,一个示例的hello工程);
移植到DSP还要花点时间的,除非你DSP启动代码都好了(这部分代码找不到了哦);
原创论文一篇,适合写课程设计、小论文等等情况;
网络上载的一些正规公司的资料。
本文介绍了一个以TI公司的TMS320DM642为核心芯片的DSP车牌识别系统设计、实现和优化。
该系统首先通过摄像机拍摄车辆的视频,输入视频信号到DSP板卡;然后从输入的视频信号中捕捉图像,识别图像中的车牌的类型、颜色和号码,最后通过串口把识别结果传到PC机。
该系统主要分为三个部分:摄像机、DSP系统和PC端软件。
文章主要介绍了DSP系统中DSP车牌识别软件的实现和优化。
由于DSP系统与普通PC机的不同,文章中详细说明了为了提高运行的速度,对DSP车牌识别软件进行的各种优化。
这些优化主要包括,提高并行性、减少运算和使用TI提供的经过优化的库等等。
经过这些优化,使DSP车牌识别系统能在(不到0.4秒)很短时间内完成一个车牌的识别及其他处理,满足了实际应用的要求。
2024/9/30 11:33:27 545KB DSP 车牌识别 TMS320DM642 源代码
1
基于HALCON开发的比较实用的视觉开发例程,包括图像识别、匹配、检测、标定测量等
2024/8/27 2:38:24 20.36MB 视觉测量 Halcon 匹配 识别
1
数字图像处理是计算机科学专业的一门基础学科,而其中人脸识别及分割又是其中最为经典不可缺失的一部分。
本文采用MATLAB-VISION包中强大的图像识别功能,对目标图像进行人脸识别。
VISION中的级联分类器具有识别人脸,嘴巴,鼻子,左右眼等功能。
并且准确度高,能在较为复杂的环境下识别出目标。
2024/8/24 22:06:16 8KB matlab 脸部识别
1
采用神经网络算法,对数据进行修改后,可以应用在图像识别的识别部分。
2024/8/13 14:50:07 737B 图像识别
1
这个程序可以识别出图片中的特定水果,是基于matlab换一个原图的话也一样可以识别途中的某些物体试过很好用
2024/8/9 1:10:34 324KB matlab 图像识别 水果
1
共 106 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡