《GNSS单频软件接收机应用与编程》书籍+源程序.rar,需要的下
2025/8/27 17:22:21 41.75MB GNSS
1
设计步骤:1、语音信号的采集利用Windows下的录音机录制一段自己的话音,或采用其它软件截取一段音乐信号,然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。
2、语音信号的频谱分析在Matlab中,可以利用函数FFT对信号进行快速傅立叶变换,得到信号的频谱特性,要求学生首先画出语音信号的时域波形,然后对语音信号进行频谱分析。
3、对语音信号分别加入正弦噪声和高斯白噪声,使信噪比为(学号)dB,画出加噪信号的时域波形和频谱图;
关于噪声信号,噪声类型分为如下几种:(1)白噪声;
(2)单频噪声(正弦干扰);
(3)多频噪声(多正弦干扰);
(4)其他干扰,如低频、高频、带限噪声,或chirp干扰、充激干扰。
4、设计数字滤波器,并画出其频率响应。
对叠加噪声前后的信号进行频谱分析,确定降噪的滤波器指标;
或者根据如下给定的滤波器性能指标:(1)低通滤波器的性能指标:=1000Hz,=1200Hz,=1dB,=100dB;
(2)高通滤波器的性能指标:=4800Hz,=5000Hz,=100dB,=1dB.(3)带通滤波器的性能指标:=1200Hz,=3000Hz,=1000Hz,=3200Hz,=100dB,=1dB。
采用窗函数法设计上面要求的3种滤波器,并画出滤波器的频率响应;
5、用滤波器对信号进行滤波用自己设计的滤波器对加噪信号进行滤波,画出滤波后信号的时域波形及频谱,并对滤波前后的信号进行对比,分析信号的变化;
6、回放语音信号,分析滤波前后的语音变化,验证滤波效果
2025/6/14 3:33:47 25KB MATLAB 数字信号 语音信号 窗函数法
1
RTKLIB是一款开源的全球导航卫星系统(GNSS)软件工具包,由HiroshiHiranuma教授开发,广泛应用于GNSS数据处理、实时定位、动态定位和精密单点定位等多个领域。
本压缩包文件“rtkilb_singlepos_rtklib”主要关注的是RTKLIB在MATLAB环境下的单点定位功能。
单点定位是GNSS接收机最基本的定位方法,它通过解算来自多个卫星的观测数据来确定地面接收机的位置。
在单频单点定位中,接收机仅使用一个频率的信号进行定位,这种方法通常适用于精度要求较低的场合,如车载导航、户外运动等。
而这个压缩包提供的MATLAB版本使得用户可以在MATLAB环境中实现单点定位的计算,这对于教学、研究或者快速原型验证非常有帮助。
主程序“rtklib—singlepos”是实现单点定位的核心代码。
这个程序可能包含了以下关键步骤:1.**数据预处理**:读取O文件(观测数据)和N文件(导航数据)。
O文件包含了接收机接收到的卫星信号的伪距或相位观测值,N文件则包含卫星的轨道和钟差信息。
2.**电离层延迟校正**:单频接收机无法直接测量电离层延迟,因此需要利用模型进行估算和校正。
程序可能内置了Klobuchar模型或其他电离层模型。
3.**对流层延迟校正**:同样,也需要考虑大气对流层的影响,一般使用气象参数进行校正。
4.**坐标转换**:将观测值从卫星坐标系转换到地心坐标系,这通常涉及地球椭球参数的使用。
5.**几何距离解算**:基于卫星的已知位置和观测值,计算接收机的三维位置。
这通常采用非线性最小二乘法进行迭代优化。
6.**误差处理**:包括钟差校正、多路径效应消除等,以提高定位精度。
7.**结果输出**:最终计算出的接收机坐标和其他相关信息会被输出,供用户分析。
在MATLAB环境中运行这个程序,用户可以方便地调整算法参数,进行各种假设和试验,同时利用MATLAB强大的可视化功能来直观地展示定位结果。
这对于研究不同环境条件下的定位性能,或者进行定位算法的优化都具有很大的便利性。
“rtkilb_singlepos_rtklib”提供了在MATLAB环境中实现RTKLIB单点定位功能的工具,对于学习和研究GNSS定位技术的人来说是一个宝贵的资源。
通过理解和应用这些代码,用户不仅可以深入理解单点定位的基本原理,还能掌握如何在实际项目中运用这些技术。
2025/5/3 14:17:28 3.35MB rtklib
1
研制了一套人眼安全的全光纤相干多普勒激光测风雷达系统。
系统采用1550nm全光纤单频保偏激光器作为激光发射光源,激光器单脉冲能量0.2mJ,重复频率10kHz,脉冲半高全宽400ns,线宽小于1MHz。
激光雷达接收望远镜和扫描器口径100mm,采用速度方位显示(VAD)扫描模式对不同方位的视线风速进行测量,使用平衡探测器接收回波相干信号,通过1G/s的模拟数字(AD)采集卡对相干探测信号进行采集,在现场可编程门阵列(FPGA)数字信号处理器中进行1024点快速傅里叶变换(FFT)得到不同距离门回波信号功率谱信息。
对于获得的各方位视线风速,研究采用非线性最小二乘法对激光雷达测量的风速剖面矢量进行反演。
激光雷达与风廓线雷达测量的风速进行了对比,两者测量的水平风速,风向和竖直风速相关系数分别为0.988,0.941和0.966。
2025/4/14 18:15:29 2.96MB 遥感 风速 多普勒激 风廓线雷
1
AD9959完整驱动程序工程,基于KEIL5与STM32.包括单频,PSK,FSK,ASK等、
2025/1/12 5:11:03 8.49MB STM32,C
1
该程序采用C/C++(一开始是C++,后来为了做嵌入式,改成了C)语言编写而成,支持RENIX3.04文件和OEM7二进制数据文件的SPP解算,可自由选择GPS、BDS系统,可自由选择单频、双频、双频无电离层组合SPP解算。
该程序简单易懂,注释明确,适合卫星导航方向的新手学习和使用。
2024/12/23 22:08:17 309.39MB GNSS GPS/BDS 伪距单点定位 卫星导航算法
1
本书面向应用与编程设计、在参考国内外论著的基础上,结合作者自己的研究成果撰写。
内容上由浅人深,第一章介绍了GNSS软件接收机的研究背景和各种卫星导航系统。
第二章介绍了信号处理的一些相关概念。
第三章介绍了卫星运动的基本理论。
第四章研究GNSS信号,包括伪随机码信号、导航电文,着重以GPS和Galileo系统为例进行讨论。
第五章研究了GNSS接收机的前端技术,包括天线和信号下变频原理。
第六章探讨卫星信号的捕获技术。
第七章讨论卫星信号的跟踪、解调和伪距计算。
第八章探讨导航定位解算方法。
第九章简要介绍了GNSS干扰和抗干扰技术。
第十章为实用编程实践。
  本书结合最新的有关研究成果,以便读者能参考本书获得较全面的知识。
当然,也不可能面面俱到,读者在阅读本书时,需要有数字信号处理、自动控制以及卫星导航的相关知识。
给出了Matlab源程序以及c++源程序,可帮助相关研究人员加快研究进度。
2024/11/1 2:42:01 6.04MB GPS 接收机
1
量块支撑与安装方式对坐标测量机尺寸测量示值误差的影响已经越来越引起重视,尤其对于线性测量精度为0.6μm+1000/L以上的计量型坐标测量机量块安装姿态对校准结果的影响不可忽略。
利用单频激光干涉仪作为测量仪,通过专用变形量测量系统,测量量块在不同姿态下支撑位置对量块中心长度的影响。
提出利用多点支撑法,减小量块长度变化量的测试方案。
实验结果表明,采用多点支撑法测得量块最大变形量为+0.21μm,并根据对坐标测量机尺寸测量示值误差测量结果不确定度分析,重新计算其标准不确定度为0.75μm。
2024/8/11 5:23:22 1.42MB 计量学 激光干涉 量块 坐标测量
1
报道了1064nm单频激光抽运的KTP晶体外腔单谐振光参量振荡器(OPO),获得了波长为2.05μm的纳秒激光脉冲输出。
在平-平腔中,将2块II类相位匹配KTP晶体按走离补偿方式放置,在400Hz重复频率下,抽运单脉冲能量达到5mJ时获得了单脉冲能量为0.9mJ的2.05μm信号光输出,其脉宽约为3.7ns,对应抽运光-信号光转换效率约为18%,光束质量因子M2在x、y方向分别为2.08、3.03。
2024/5/16 6:05:39 5.57MB 非线性光 光参量振 2 μm激光
1
《GNSS单频软件接收机应用与编程》源程序MATLAB,可以直接下载运行
2024/4/1 5:17:35 5.31MB GNSS
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡