[{"title":"(75个子文件3.22MB)数值分析颜庆津课件和matlab程序-《数值分析(颜庆津)》课件和matlab程序2.rar","children":[{"title":"《数值分析(颜庆津)》课件和matlab程序2","children":[{"title":"研究生数值分析课件2013(2)","children":[{"title":"12_YQJ_Ch5_1_1代数插值.ppt <span style='color:#111;'>911.00KB</span>","children":null,"spread":false},{"title":"16_YQJ_Ch5_3_1样条插值1111.ppt <span style='color:#111;'>211.00KB</span>","children":null,"spread":false},{"title":"13_YQJ_Ch5_1_2牛顿插值.ppt <span style='color:#111;'>995.00KB</span>","children":null,"spread":false},{"title":"20_YQJ_Ch5_6曲线拟合.ppt <span style='color:#111;'>711.50KB</span>","children":null,"spread":false},{"title":"17_YQJ_Ch5_3_2_4样条插值.ppt <span style='color:#111;'>481.00KB</span>","children":null,"spread":false},{"title":"19_YQJ_Ch5_6最佳平方逼近.ppt <span style='color:#111;'>564.00KB</span>","children":null,"spread":false},{"title":"18_YQJ_Ch5_5正交多项式.ppt <span style='color:#111;'>627.50KB</span>","children":null,"spread":false},{"title":"Ch5_3样条插值10用简介.ppt <span style='color:#111;'>194.50KB</span>","children":null,"spread":false},{"title":"16_YQJ_Ch5_3_1样条插值.ppt <span style='color:#111;'>395.00KB</span>","children":null,"spread":false},{"title":"11_YQJ_Ch4非线性方程求根Q.ppt <span style='color:#111;'>567.50KB</span>","children":null,"spread":false},{"title":"Ch5_5正交多项式09用.ppt <span style='color:#111;'>637.00KB</span>","children":null,"spread":false},{"title":"15_YQJ_Ch5_2Hrmt插值.ppt <span style='color:#111;'>265.00KB</span>","children":null,"spread":false},{"title":"21_YQJ_Ch6数值积分.ppt <span style='color:#111;'>1.53MB</span>","children":null,"spread":false},{"title":"Matlab程序","children":[{"title":"1-解线性代数方程组的Matlab程序","children":[{"title":"ShunXuGauss2.m <span style='color:#111;'>731B</span>","children":null,"spread":false},{"title":"jacobi.m <span style='color:#111;'>409B</span>","children":null,"spread":false},{"title":"LieZhuYuan.m <span style='color:#111;'>1.37KB</span>","children":null,"spread":false},{"title":"BeiJiaMatrix.m <span style='color:#111;'>604B</span>","children":null,"spread":false},{"title":"SorDieDai.m <span style='color:#111;'>1.15KB</span>","children":null,"spread":false},{"title":"JiaoHuanMatrix.m <span style='color:#111;'>684B</span>","children":null,"spread":false},{"title":"gaussseidel.m <span style='color:#111;'>431B</span>","children":null,"spread":false},{"title":"JacobiF.m <span style='color:#111;'>886B</span>","children":null,"spread":false},{"title":"ShunXuGauss.m <span style='color:#111;'>933B</span>","children":null,"spread":false},{"title":"JacobiPuBanjing.m <span style='color:#111;'>230B</span>","children":null,"spread":false},{"title":"SORPuBanjing.m <span style='color:#111;'>290B</span>","children":null,"spread":false},{"title":"L_ZuiGanFa.m <span style='color:#111;'>370B</span>","children":null,"spread":false},{"title":"sor.m <span style='color:#111;'>451B</span>","children":null,"spread":false},{"title":"ZuiGanFa.m <span style='color:#111;'>370B</span>","children":null,"spread":false},{"title":"GSPuBanjing.m <span style='color:#111;'>249B</span>","children":null,"spread":false},{"title":"Gauss_S.m <span style='color:#111;'>865B</span>","children":null,"spread":false},{"title":"G_SDieDai.m <span style='color:#111;'>1013B</span>","children":null,"spread":false}],"spread":false},{"title":"2-解非线性代数方程的Matlab程序","children":[{"title":"Lmnewton.m <span style='color:#111;'>536B</span>","children":null,"spread":false},{"title":"Lmnewton1.m <span style='color:#111;'>467B</span>","children":null,"spread":false},{"title":"secantline.m <span style='color:#111;'>659B</span>","children":null,"spread":false},{"title":"secantlineD11.m <span style='color:#111;'>650B</span>","children":null,"spread":false},{"title":"Untitled.m <span style='color:#111;'>196B</span>","children":null,"spread":false},{"title":"secantlineD.m <span style='color:#111;'>652B</span>","children":null,"spread":false},{"title":"NewtonF2.m <span style='color:#111;'>672B</span>","children":null,"spread":false},{"title":"Lmnewton11.m <span style='color:#111;'>466B</span>","children":null,"spread":false},{"title":"NewtonF.m <span style='color:#111;'>588B</span>","children":null,"spread":false},{"title":"JDDDL41.m <span style='color:#111;'>260B</span>","children":null,"spread":false},{"title":"secantlineD1.m <span style='color:#111;'>666B</span>","children":null,"spread":false},{"title":"FczNewtonL7.m <span style='color:#111;'>747B</span>","children":null,"spread":false},{"title":"FCZJDDDxt11.m <span style='color:#111;'>596B</span>","children":null,"spread":false},{"title":"FCZJDDDL4_6.m <span style='color:#111;'>657B</span>","children":null,"spread":false},{"title":"FCZJDDDxt10.m <span style='color:#111;'>596B</span>","children":null,"spread":false},{"title":"Lmnewton22.m <span style='color:#111;'>383B</span>","children":null,"spread":false},{"title":"Lmnewton2.m <span style='color:#111;'>385B</span>","children":null,"spread":false}],"spread":false},{"title":"3-求方阵特征值及特征向量的Matlab程序","children":[{"title":"niSSJ.m <span style='color:#111;'>826B</span>","children":null,"spread":false},{"title":"Jacobi_Dui.m <span style='color:#111;'>1.31KB</span>","children":null,"spread":false},{"title":"QRself1.m <span style='color:#111;'>851B</span>","children":null,"spread":false},{"title":"AntiPowerPY.m <span style='color:#111;'>1.41KB</span>","children":null,"spread":false},{"title":"MatrixMax.m <span style='color:#111;'>175B</span>","children":null,"spread":false},{"title":"eig_my.m <span style='color:#111;'>2.13KB</span>","children":null,"spread":false},{"title":"eig_duichen.m <span style='color:#111;'>1.60KB</span>","children":null,"spread":false},{"title":"AntiPower.m <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"z3xt10.m <span style='color:#111;'>86B</span>","children":null,"spread":false},{"title":"Power1.m <span style='color:#111;'>1.37KB</span>","children":null,"spread":false},{"title":"Z3XT.m <span style='color:#111;'>354B</span>","children":null,"spread":false},{"title":"z3xt12_1.m <span style='color:#111;'>353B</span>","children":null,"spread":false},{"title":"nssj.m <span style='color:#111;'>825B</span>","children":null,"spread":false},{"title":"z3xt12.m <span style='color:#111;'>351B</span>","children":null,"spread":false},{"title":"fmf.m <span style='color:#111;'>1.22KB</span>","children":null,"spread":false},{"title":"QRself.m <span style='color:#111;'>847B</span>","children":null,"spread":false},{"title":"cmf.m <span style='color:#111;'>1.34KB</span>","children":null,"spread":false},{"title":"z3xt11.m <span style='color:#111;'>248B</span>","children":null,"spread":false},{"title":"z3xt7.m <span style='color:#111;'>98B</span>","children":null,"spread":false},{"title":"z3li1.m <span style='color:#111;'>211B</span>","children":null,"spread":false}],"spread":false},{"title":"5-数值求积的Matlab程序","children":[{"title":"SimpInt.m <span style='color:#111;'>627B</span>","children":null,"spread":false},{"title":"rbg.m <span style='color:#111;'>1002B</span>","children":null,"spread":false}],"spread":false},{"title":"4-插值与逼近的Matlab程序","children":[{"title":"polyfitk.m <span style='color:#111;'>1.37KB</span>","children":null,"spread":false},{"title":"lagrange1.m <span style='color:#111;'>268B</span>","children":null,"spread":false},{"title":"L5_11.m <span style='color:#111;'>223B</span>","children":null,"spread":false},{"title":"NewtonInter.m <span style='color:#111;'>1.03KB</span>","children":null,"spread":false},{"title":"yangtiao3.m <span style='color:#111;'>83B</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"14_YQJ_Ch5_1_2二元函数插值.ppt <span style='color:#111;'>211.50KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]