智能视频监控是计算机视觉领域新兴的研究方向,它通过对摄像机拍摄的视频图像序列进行自动分析来对被监控场景中的事物变化进行定位、跟踪和识别,并以此对相关目标的行为进行分析和判别,在实现了日常管理工作的同时又能对目标的异常行为做出及时反应。
行人目标检测与跟踪算法是智能视频监控系统中的核心问题,研究相关算法对于提高智能视频监控系统的性能具有重要的意义。
2025/11/9 15:03:33 2.55MB 行人检测 智能视频监控
1
本次实验使用opencv中的ml组件中的SVM做有无行人的判别,内涵完整代码和图片数据。
2025/11/7 3:07:38 15.58MB OPENCV svm
1
人脸识别作业,主要结合主成分分析(PrincipalComponentsAnalysis,PCA)与线性判别分析(LinearDiscriminantAnalysis,LDA)的特点,提出PCA+LDA算法,并与LDA比价
2025/10/8 20:28:34 520KB 人脸识别 计算机视觉 PCA+LDA
1
基于matlab的判别分析代码非常有用的代码值得学习
2025/9/23 10:12:37 9KB matlab 判别分析
1
本书主要介绍模式识别的基础知识、基本方法、程序实现和典型实践应用。
全书共9章。
第1章介绍模式识别的基本概念、基础知识;
第2章介绍贝叶斯决策理论;
第3章介绍概率密度函数的参数估计;
第4章介绍参数判别分类方法;
第5章介绍聚类分析;
第6章介绍特征提取与选择;
第7章介绍模糊模式识别;
第8章介绍神经网络在模式识别中的应用;
第9章介绍模式识别的工程应用。
每章的内容安排从问题背景引入,讲述基本内容和方法,到实践应用(通过MATLAB软件编程)。
2025/8/24 3:12:36 11MB 模式识别 MATLAB 程序实现 典型实践
1
使用贝叶斯分类器实现文本文件的分类判别。
1、可以指定训练集进行文本训练;
2、使用训练好的特征值进行未知文件类型的判别。
2025/8/20 9:09:46 1.76MB 贝叶斯 文本分类
1
《PLS偏最小二乘法在MATLAB中的实现详解》PLS(PartialLeastSquares,偏最小二乘)是一种统计分析方法,广泛应用于多元数据分析,特别是在化学计量学、机器学习和模式识别等领域。
它通过将原始数据投影到一个新的低维空间中,使因变量与自变量之间的关系得到最大化,并且能有效处理多重共线性问题。
MATLAB作为强大的数值计算和数据可视化工具,是实现PLS的理想平台。
本资料包含两个部分:单因变量的PLS实现和多因变量的PLS实现。
下面将对这两个方面进行详细阐述。
1.单因变量PLS:单因变量的PLS主要针对只有一个响应变量的情况。
在MATLAB中,我们首先需要定义输入变量X和输出变量y,然后构建PLS模型。
关键步骤包括:-数据预处理:对数据进行标准化或归一化,以消除量纲影响。
-计算X和y的相关矩阵,找到最大相关性的方向。
-通过奇异值分解(SVD)分解相关矩阵,得到主成分。
-选择合适的主成分数量,这通常通过交叉验证来确定。
-使用选定的主成分构建PLS回归模型,预测y值。
2.多因变量PLS:对于多因变量情况,PLS的目标是同时考虑多个响应变量。
此时,我们可以使用多响应PLS(MRPLS)或者偏最小二乘判别分析(PLSDA)。
MATLAB中的实现步骤大致相同,但需要处理多个y变量:-同样进行数据预处理。
-计算X与所有y的联合相关矩阵。
-SVD分解该联合相关矩阵,提取主成分。
-对每个y变量分别建立PLS模型,每个模型有自己的权重向量和载荷。
-使用选定的主成分,对每个y变量进行预测。
在MATLAB中,可以利用内置函数如`plsregress`或自定义脚本来实现这些过程。
自定义脚本能够提供更大的灵活性,允许用户调整参数和添加额外的特性,如正则化、特征选择等。
总结,PLS偏最小二乘法在MATLAB中的实现涉及数据预处理、主成分提取、模型构建和验证等多个环节。
通过理解这些步骤,可以有效地应用PLS解决实际问题,无论是单因变量还是多因变量的情况。
提供的MATLAB程序代码文档将为读者提供具体的实现细节和示例,帮助深入理解和掌握PLS算法。
2025/8/9 10:36:08 4KB 偏最小二乘 matlab程序
1
北京大学数学教学系列丛书应用多元统计分析高惠璇多元正态分布 回归分析 判别分析 聚类分析 主成份分析 因子分析
1
为了帮助对视觉障碍患者有效识别道路周围的场景,提出一种基于迁移学习和深度神经网络方法,实现实时盲道场景识别。
首先提取盲道障碍物的瓶颈描述子和判别区域集成显著性特征描述子,并进行特征融合,然后训练新的盲道特征表示,用Softmax函数实现盲道场景识别。
实验中,对成都不同区域盲道周围障碍物采样,分别采用基于Mobilenet模型不同参数训练和测试了提出的新模型,最后在实际应用场景,实现了盲道周边障碍物的实时分类和报警,实验证明提出的方法具有很高准确率和良好的运行性能。
2025/7/30 17:30:33 1.22MB 论文研究
1
jQuery-validation1.14.0官方版(2015.09.13--源代码+示例)输入格式判别,条件输入识别,验证通过
1
共 163 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡