《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
matlab实现ID3决策树代码,例程中使用西瓜数据集,运行decisionTree.m即可
2025/6/26 2:30:41 7KB matlab 模式识别 决策树
1
机器学习导论课程PPT。
Chap01_绪论Chap02_模型评估与选择Chap03_线性模型Chap04_决策树Chap05_神经网络
2025/6/22 18:09:51 15.8MB 机器学习
1
用matlab语言的决策树算法源码。
用于数据挖掘的
2025/6/16 7:06:58 3KB 数据挖掘 决策树 源码 c4.5
1

数据挖掘技术在科技信息管理中的应用研究一、数据挖掘的定义与目的数据挖掘是一种从大量数据中抽取或“挖掘”信息的过程,旨在发现数据中的潜在规律、模式和关联关系。
它不是简单的数据查询或者数据处理,而是通过特定算法对数据进行分析,以期得到非平凡的、隐含的、先前未知的且具有潜在价值的信息或知识。
这一技术对于科技信息管理尤其重要,因为它可以帮助管理者从海量信息中提取有价值的数据,为决策提供科学依据。
二、数据挖掘在科技信息管理中的应用科技管理信息化的发展导致了信息量的大幅增长,给信息的提取带来了难度。
数据挖掘技术可以有效地挖掘海量数据背后未知的规律或模式,为科技管理决策提供了有力的依据和支持。
在科技信息管理中,数据挖掘可以用来分析科技人员、科技成果、科技项目之间的关联关系,通过数据挖掘模型,发现三者之间的深层关系,为科技管理提供决策支持。
三、数据挖掘技术的分类数据挖掘技术可以分为多个类别,其中包括关联规则、决策树、聚类、分类、变化和偏差分析、回归分析、Web页挖掘等。
每种技术有其特定的适用场景和分析方法。
例如,关联规则挖掘主要通过发现不同数据项集之间的隐藏关联规则来工作,而决策树分析则是构建一个模型,用以预测目标变量的值。
四、关联规则与Apriori算法关联规则挖掘在数据挖掘中是一种重要的技术。
它通过在数据库中找出置信度和支持度都大于给定阈值的规则,揭示数据项集之间的潜在关联。
Apriori算法是挖掘布尔关联规则频繁项集的算法之一,基于两阶段频集的递推思想,主要通过逐层搜索迭代方法,从大量数据中找出项集之间的关系或规则。
该算法对于处理科技信息管理中的大量数据尤为有效。
五、数据挖掘过程数据挖掘的过程可以分为几个阶段:问题定义、数据抽取、数据预处理、数据挖掘、结果评估与表示等。
在问题定义阶段,首先要明确数据挖掘的目标和任务;
数据抽取阶段,是从数据库或数据仓库中提取相关数据;
数据预处理阶段,对提取的数据进行清洗、转换等操作,使之适合进行挖掘;
数据挖掘阶段,运用特定算法对预处理后的数据进行分析,以提取信息和知识;
最后在结果评估与表示阶段,对挖掘出的模式进行评价,并以易于理解的方式展示结果。
六、数据挖掘在安阳市科技信息管理系统中的应用实例文章中提到安阳市科学技术信息研究所利用数据挖掘技术,通过安阳市科技信息管理系统,对512名科技人员、899项科技成果和3014项科技项目进行关联分析。
通过构建数据挖掘模型,研究科技人员的年龄、职称、单位等信息与所产出的科技成果、参与的科技项目之间的关联规则。
通过这种方式,不仅能够发现隐藏的关系和规律,还能够为科技人才合理分配和科技项目管理提供参考。
七、数据准备与处理数据准备是数据挖掘过程中的首要步骤,它包括数据选择、数据预处理和数据变换等环节。
数据选择需要从现有的数据库或数据仓库中提取相关数据,形成目标数据集。
数据预处理和变换则是为了消除数据中的噪声和不一致性,提高数据质量,确保挖掘结果的准确性。
八、结论随着信息化和大数据时代的到来,数据挖掘技术已经成为科技信息管理不可或缺的重要工具。
它能够从庞大的科技信息数据库中提炼出有价值的信息,帮助管理者做出更加精准和高效的决策。
通过持续研究和实践,数据挖掘在科技信息管理中的应用将更加广泛,对科技进步的贡献也将更加显著。
2025/6/16 2:41:25 274KB
1
treeplan工具,测试通过,决策树,excel,
2025/6/13 15:26:30 133KB excel 加载宏
1
1.使用Python实现基本的决策树算法;
2.主要使用pandas的DataFrame实现;
3.为防止过度拟合,在小于20个记录时,直接选取记录中最多类别;
3.没有画决策树图
2025/6/8 7:10:33 2KB 数据挖掘 Python 决策树
1
java数据挖掘C4.5决策树的动态生成.
2025/6/4 0:39:30 892KB java
1
天气因素有温度、湿度和刮风等,通过给出数据,使用决策树算法学习分类,输出一个人是运动和不运动与天气之间的规则树。
2025/5/6 15:11:34 219KB 决策树
1
决策树Java代码实现
2025/4/2 1:28:43 11KB 决策树Java
1
共 141 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡