本资源为NSGA2的C语言代码,实验问题为ZDT1,ZDT2,ZDT3,ZDT6,DTLZ1,DTLZ2。
2025/10/29 0:39:15 79KB NSGA2
1
实用型,新型智能优化算法,可根据不同工程实际对具体工程细节进行优化,适合用于实验仿真,论文写作
2025/10/28 5:58:17 109KB 智能优化算法 matlab
1
《图论与网络最优化算法》是计算机科学与工程领域中的一门重要课程,主要研究如何在图结构中寻找最优解。
龚劬教授的这本教材深入浅出地讲解了图论的基本概念、网络最优化算法及其应用。
课后习题和参考答案是学习过程中的重要辅助资料,能够帮助学生巩固理论知识,提升实践能力。
我们要理解什么是图论。
图论是数学的一个分支,研究点(顶点)和点之间的连接(边)组成的结构——图。
在计算机科学中,图常被用来建模各种复杂问题,如网络连接、交通路线、社交关系等。
图的性质包括连通性、树形结构、环、路径、欧拉路径、哈密顿回路等。
网络最优化算法则是图论在实际问题中的应用,比如最小生成树问题(Prim或Kruskal算法)、最短路径问题(Dijkstra或Floyd-Warshall算法)、最大流问题(Ford-Fulkerson或Edmonds-Karp算法)。
这些算法的目标是在满足特定约束条件下找到最优解,如最小化成本、最大化流量等。
课后的习题涵盖了图论的基础概念和网络最优化算法的各个方面。
例如,可能会要求学生构造特定类型的图,分析其性质,或者设计算法解决实际问题。
参考答案提供了正确的解题思路和步骤,有助于学生检查自己的理解和解题技巧。
在"平时作业答案"这个文件中,可能会包含对这些问题的详细解答,包括图的表示方法(邻接矩阵、邻接表等),解题过程中的逻辑推理,以及算法的具体实现。
通过对比参考答案,学生可以发现自己的不足,进一步提高解决问题的能力。
学习《图论与网络最优化算法》不仅可以提升理论素养,还能培养解决实际问题的能力。
在教育和考试场景中,这部分知识是许多计算机专业考试和竞赛的重要部分,如ACM/ICPC编程竞赛、研究生入学考试等。
掌握好这些内容,对于从事计算机网络、数据结构、算法设计等相关工作大有裨益。
《图论与网络最优化算法》不仅是一门理论课程,更是一门实践性强、应用广泛的学科。
通过深入学习和练习,学生能够掌握解决复杂问题的工具,为未来的职业生涯打下坚实基础。
2025/10/21 20:57:57 172.4MB 网络 网络
1
这个代码是NILMTK中的CO代码,主要利用组合优化算法来做电荷负载分解
2025/10/20 13:48:01 12KB machine lear
1
糖尿病数据集"diabetes.csv"是一个广泛用于统计分析和机器学习任务的数据集,特别是针对深度学习的应用。
这个数据集包含了大量关于糖尿病患者的医疗记录,旨在帮助研究者们预测糖尿病的发展趋势或者评估疾病管理策略的效果。
下面我们将深入探讨该数据集中的关键知识点。
1.数据集结构:通常,CSV(CommaSeparatedValues)文件是一种存储表格数据的格式,每一行代表一个观测值,列则对应不同的特征或变量。
在这个糖尿病数据集中,每一行可能代表一个患者在特定时间点的健康状况。
2.特征详解:-年龄(Age):患者年龄,对于疾病发展有显著影响。
-性别(Sex):患者性别,男性和女性可能面临不同的糖尿病风险。
-BMI(BodyMassIndex):身体质量指数,是衡量体重与身高比例的一个指标,与糖尿病风险相关。
-血压(BloodPressure):血压水平,高血压是糖尿病并发症的重要因素。
-葡萄糖(Glucose):血液中的葡萄糖浓度,直接影响糖尿病的诊断。
-胆固醇(Cholesterol):血液中的胆固醇含量,高胆固醇可能加剧糖尿病并发症。
-心电图(ECG):心电图结果,可以反映心脏健康状况,可能影响糖尿病的整体管理。
-尿蛋白(UrineProtein):尿液中的蛋白质含量,异常可能表明肾脏受损,常见于糖尿病并发症。
-甲状腺刺激激素(TSH):甲状腺功能的指标,甲状腺问题可能与糖尿病有关联。
-以及其他可能的医疗指标和历史数据。
3.目标变量:数据集可能包含一个目标变量,例如“糖尿病进展”或“并发症发生”,用于预测模型的训练和验证。
这个变量可能是二元的(如无/有并发症)或连续的(如疾病严重程度评分)。
4.数据预处理:在使用数据集之前,通常需要进行数据清洗,处理缺失值、异常值,以及可能的分类变量编码。
此外,为了适应深度学习模型,可能需要对数值特征进行标准化或归一化。
5.模型构建:在深度学习中,可以使用各种神经网络架构,如卷积神经网络(CNN)用于特征提取,循环神经网络(RNN)处理时间序列数据,或者全连接网络(FCN)处理一般的数据。
更先进的模型如长短时记忆网络(LSTM)或门控循环单元(GRU)也能用于捕捉患者健康状况随时间变化的模式。
6.训练与评估:模型的训练通常涉及反向传播和优化算法(如梯度下降或Adam)。
评估指标可能包括准确率、召回率、F1分数、AUC-ROC曲线等,具体取决于任务的性质。
7.隐私与伦理:在处理这类个人健康数据时,必须遵守严格的隐私保护规定,确保数据脱敏且匿名化,以保护患者隐私。
8.预测与解释:模型预测的结果需要解释,以便医生和患者理解并采取相应行动。
可解释性机器学习方法如局部可解释性模型(LIME)和SHAP值可以提供洞察模型决策背后的特征重要性。
"diabetes.csv"数据集为糖尿病研究提供了一个宝贵的资源,通过深度学习方法,我们可以挖掘其中的潜在规律,提高疾病预测的准确性,并为患者提供更好的健康管理建议。
在实际应用中,要充分利用数据集,同时确保数据安全和合规性。
2025/10/12 17:01:14 9KB 数据集
1
增广拉格朗日乘子法ALM算法是机器学习中十分常用且有效的一种优化算法,经常用于低秩和稀疏问题的优化求解中,这个包是增广拉格朗日乘子法的matlab代码
2025/10/10 20:24:35 749KB 机器学习 优化算法 ALM算法
1
这是一个用来解规划的遗传算法,由于普通的优化算法可能陷入局部最优解,而遗传算法可以弥补这个缺陷,这是用来解决无约束的,有约束的可以通过罚函数法来构造
2025/10/4 13:49:15 96KB 遗传算法 无约束规划
1
凸优化matlab算法包内包含多种凸优化算法,可用来解决线性/非线性规划问题,实用性很好。
2025/9/27 20:20:14 6.13MB 凸优化
1
DIRECT算法是由Jones等人提出的一种确定性全局优化算法特别适用于具有确定变量空间的函数寻优。
DIRECT优化算法matlab程序特点:1、附带帮助文档,原理解释清晰可靠2、该算法全局改进带约束
2025/9/27 1:01:53 2.69MB 优化算法 全局优化 matlab 启发式算法
1
函数寻优新的优化算法效果较好matlabALO函数寻优新的优化算法效果较好matlabALO
2025/9/3 5:42:02 152KB 函数寻优 新的优化算法
1
共 392 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡