使用glove预训练词向量(1.6GB维基百科语料),维度为300,词汇量约13000,文件大小为41.2MB
2024/10/5 2:02:26 41.24MB 自然语言处理 预训练词向量
1
pythonsynonyms中所需的中文词向量文件,下载后请放置于/root/anaconda3/lib/python3.6/site-packages/synonyms/data/words.vector.gz
2023/12/9 14:44:04 158.23MB synonyms 中文词向量
1
简体中文|简介PaddleNLP2.0具有丰富的模型库,简洁易用的API与高性能的分布式训练的能力,可以为飞轮开发者提升文本建模效率,并提供基于Padddle2.0的NLP领域最佳实践。
特性丰富的模型库涵盖了NLP主流应用相关的前沿模型,包括中文词向量,预训练模型,词法分析,文本分类,文本匹配,文本生成,机器翻译,通用对话,问答系统等,更多详细介绍请查看。
简洁易用的API深度兼容飞轮2.0的高层API体系,提供可替换的文本建模模块,可大幅度减少数据处理,组网,训练互换的代码开发量,提高文本建模开发效率。
高效分散训练通过深度优化的混合精度训练策略与舰队分布式训练API,可充
2023/9/23 16:01:53 2.33MB nlp text-classification transformer seq2seq
1
知乎中文词向量
2023/7/31 18:09:13 255.14MB 词向量
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡