小白总结的Transformer
2024/4/25 14:33:50 2.4MB 深度学习
1
BERT在Azure机械学习效率上此回购搜罗终端到终真个食谱以及的(双向编码器谈判来自变形金刚)用语言表白模子。
伯特BERT是一种语言展现模子,其特色在于能够实用捉拿语料库中深层以及怪异的文本关连。
在原始论文中,作者证明晰BERT模子能够很约莫地改编以构建用于许多NLP责任的最新模子,搜罗文天职类,命名实体识别以及下场解答。
在此堆栈中,咱们提供了条记本,使开拓人员能够从语料库中重新熬炼BERT模子,并微调现有的BERT模子以处置特意的责任。
此回购中提供了的扼要可快捷末了使用BERT。
预熬炼BERT预熬炼中的挑战将BERT语言展现模子预熬炼到所需的准确性水平是极其具备挑战性的。
下场,大大都开拓人员从在尺度语料库(譬如Wikipedia)上经由预熬炼的BERT模子末了,而不是重新末了熬炼它。
假如在与熬炼前步骤中使用的语料库相似的语料库上熬炼最终模子,则此策略下场很好。
然则,
2023/3/30 14:24:23 232KB Python
1
变压器-TTSPytorch实现与众所周知的saco2seq模型(如tacotron)相比,该模型的训练速度快约3至4倍,并且合成语音的质量几乎相同。
通过实验确认,每步花费约0.5秒。
我没有使用波网声码器,而是使用tacotron的CBHG模型学习了后网络,并使用griffin-lim算法将频谱图转换为原始波。
要求安装python3安装pytorch==0.4.0安装要求:pipinstall-rrequirements.txt数据我使用了LJSpeech数据集,该数据集由成对的文本脚本和wav文件组成。
完整的数据集(13,100对)可在下载。
我将和用作预处理代码。
预训练模型您可以下载预训练的模型(AR模型为160K,Postnet为100K)在检查点/目录中找到预训练的模型。
留意图约15k步后出现对角线对齐。
以下留意图以16
2016/5/8 12:34:51 1.51MB text-to-speech deep-learning pytorch tts
1
ParlAI交互式问答,ParlAI是Facebook开源的一个可用于在多种开放可用的对话数据集上训练和评估人工智能模型的框架。
一个统一的分享、训练和评估对话模型的平台,支持各种对话任务。
特色:包含所有主流的对话数据集,从开放域闲谈到可视化问答应有尽有;
一系列现成的模型供你参考使用,从抽取式基线模型到Transformer系列;
无缝集成了亚马逊的AmazonMechanicalTurk平台,用于数据收集、模型训练和人工评估。
2017/6/14 12:34:02 43.47MB 人工智能 问答 交互式问答
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡