sx1276sx1278阻抗婚配设计指南
2023/2/19 0:45:56 243KB sx1276 sx1278 阻抗匹配
1
本书将电力系统继电保护原理与MATLAB/Simulink仿真有机地结合起来,在讲解继电保护原理的同时,用MATLAB/Simulink的仿真实例来验证所讲保护的动作原理及故障特征,以帮助读者能够更为方便、直观地掌握较为抽象的继电保护原理及配合关系,较快地进入电力系统继电保护这一领域。
本书可作为高等院校电气工程及其自动化专业的本、专科教材,也可作为电气工程相关专业研究生、电力系统工程技术人员的参考书。
前言第1章绪论11.1电力系统继电保护的基本任务11.2电力系统继电保护的基本原理及组成21.2.1电力系统继电保护的基本原理21.2.2电力系统继电保护的组成41.3对电力系统继电保护的基本要求51.4电力系统继电保护的发展简史61.5电力系统仿真及MATLAB简介8第2章电流互感器与电压互感器102.1电流互感器102.1.1电流互感器简介102.1.2电流互感器的常用额定参数102.1.3电流互感器的常用接线方式l22.2电压互感器122.2.1电压互感器简介122.2.2电压互感器的常用额定参数132.2.3电压互感器常用的接线方式142.3电流、电压互感器仿真示例152.3.1电流互感器两相星形接线的建模与仿真152.3.2考虑电流互感器饱和特性时的建模与仿真-222.3.3电容式电压互感器的建模与暂态特性仿真24第3章电网相间短路的电流电压保护与仿真273.1继电特性及运行方式273.1.1继电器的继电特性273.1.2继电保护的运行方式283.2单侧电源网络的相间电流、电压保护293.2.1电流速断保护(电流保护I段)303.2.2限时电流速断保护(电流保护Ⅱ段)313.2.3定时限过电流保护(电流保护疆段)333.2.4三段式电流保护装置353.2.5电流电压联锁速断保护353.2.6反时限过电流保护373.2.7电流保护的功能分析393.3单侧电源网络相间电流保护的建模与仿真393.3.1三段式电流保护的建模与仿真393.3.2电动机自起动对过电流保护的影响仿真463.4电网相间短路的方向电流保护原理503.4.1方向电流保护的作用原理503.4.2功率方向元件的工作原理513.4.3相间短路功率判别元件的接线方式543.4.4双侧电源网络中电流保护整定的特点553.4.5对方向性电流保护的评价583.5电网相间短路的方向电流保护的建模与仿真583.5.1功率方向元件的建模与仿真583.5.2分支电路对限时电流速断保护的影响仿真62第4章电网接地故障的电流电压保护与仿真.,664.1电力系统中性点运行方式与接地故障概述664.1.1电力系统中性点运行方式的分类664.1.2不同中性点运行方式下的接地故障674.2大电流接地系统的接地短路保护684.2.1中性点直接接地电网发生接地短路时的故障特征694.2.2零序分量的获取704.2.3中性点直接接地电网的接地保护734.2.4对零序电流保护的评价774.3小电流接地系统的单相接地保护784.3.1中性点不接地电网单相接地时的故障特征784.3.2中性点经消弧线圈接地系统单相接地的故障特征814.3.3小电流接地系统的绝缘监视及单相接地故障选线方法844.4电网接地故障的建模与仿真854.4.1中性点直接接地电网接地故障的建模与仿真854.4.2中性点不接地电网接地故障的建模与仿真914.4.3中性点经消弧线圈接地电网接地故障的建模与仿真97第5章电网的距离保护与仿真1015.1距离保护的作用原理1015.1.1距离保护的基本概念1015.1.2距离保护的时限特性1025.1.3距离保护的组成1025.2阻抗继电器一1035.2.1阻抗继电器的分类1035.2.2圆特性阻抗继电器1045.2.3直线与四边形特性的阻抗继电器一1095.2.4阻抗继电器的精确工作电流1105.3阻抗继电器的接线方式1115.3.1故障时的母线电压1115.3.20。
接线方式分析1115.3.3带零序补偿的接线方式分析1135.4距离保护的整定计算1135.4.1各段保护具体的整定原则1135.4.2采用四边形特性的阻抗继电器的整定计算方法1155.5距离保护的振荡闭锁1155.5.1电力系统振荡时电流、电压的变化规律1165.5.2电力系统振荡时测量阻抗的变化
2023/2/8 17:53:30 40.97MB 仿真 电力系统继电 MATLAB
1
VCA821超带宽可变增益放大器,电赛必备木块。
VCA821是直流耦合,宽带,dB线性,连续可变的压控增益放大器它提供了一个差分输入与用于改变向下40分贝增益从标称最大增益由增益电阻器(RG)和反馈电阻(RF)的设置高阻抗增益控制输入单端的转换。
该VCA821内部架构由两个输入缓冲器和输出电流反馈放大器阶段集成有乘数核心是提供一种完整的可变增益放大器(VGA)系统,该系统不需求外部缓冲。
2023/2/5 7:04:05 10.89MB AGC VCA821 自动增益 电赛
1
在分析挪动机械手与外界作业环境位置关系基础上,建立工件加工过程的控制模型,分析了阻抗滤波器、位置控制器和环境阻抗。
建立了基于SolidWorks、ADAMS和Matlab/Simulink环境下的挪动机械手操作加工仿真平台,进而开展挪动机械手作业过程操作力控制的仿真研究,结果表明,所提出的控制策略合理可行。
2023/1/15 11:25:40 763KB 行业研究
1
基于LabVIEW的钢轨阻抗特性测量零碎
2016/9/1 1:19:23 785KB 研究论文
1
史密夫图表(Smithchart,又称史密斯圆图)是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。
是一款用于电机与电子工程学的图表,主要用于传输线的阻抗婚配上。
该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。
一条传输线(transmissionline)的电阻抗力(impedance)会随其长度而改变,要设计一套婚配(matching)的线路,需要通过不少繁复的计算程序,史密夫图表的特点便是省略一些计算程序。
2020/1/12 19:11:05 1.61MB Smith 计算图
1
针对Boost变换器小信号稳定性的研讨,对Boost变换器采用单电压环控制,对负载侧添加受控源作为小信号扰动,得到闭环输出阻抗特性,通过ACsweep得到闭环输出阻抗的bode图,可用于小信号建模计算闭环输出阻抗的对比验证
2019/10/6 11:52:38 80KB Boost变换器 输出阻抗
1
变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
本次设计为110kV变电站初步设计,分为主接线、短路电流计算、设备选择等三部分,所设计的内容力求概念清楚,层次分明。
本次设计以110kV变电站为主要设计对象,同时附有1张电气主接线图加以说明。
该变电站设有2台主变压器,站内主接线分为110kV和10kV两个电压等级。
各个电压等级均采用单母分段的接线方式。
本文从主接线、短路电流的计算、设备选择等几方面对变电站设计进行了阐述。
第一章是变电设计程序。
第二章主要介绍的是主变的选择及变压器型式的选择、绕组连接方式主变的阻抗及调压方式选择、容量比、主变冷却方式和能否选择自耦、各侧电压和绝缘的选择和变压器的容量和台数的选择。
第三章电气主接线的方案选择为主要内容,对备选方案从可靠性、灵活性和经济性三个方面进行了论述,并选择出最佳方案。
第四章对110kV和10kV两个等级短路点进行短路电流计算。
第五章主要介绍了变电站的电气设备的选择,包括母线型号和断路器、隔离开关的选择,还有对电压互感器、电流互感器的选择及各个设备的校验,更近一步适合变电站的需求。
第六章介绍了变电站配电装置及电气总平面设计。
第七章是防雷电保护和接地保护的主要内容。
总之,全面的对本变电站设计进行分析,从不同的方面适合本地,人民生活和经济发展的需要。
2015/3/1 12:47:39 831KB 110kV 变电站
1
电子科技大学-詹惠琴-电子测量原理第1章测量的基本原理.ppt第2章测量方法与测量零碎.ppt第3章测量误差及数据处理.ppt第4章时间频率测量.ppt第5章电压测量.ppt第6章阻抗测量.ppt第7章信号波形测量(new).ppt第8章信号的产生.ppt第9章信号分析和频域测量(新).ppt第10章线性零碎频率特性测量和网络分析(新).ppt第11章数字零碎测试技术.ppt第12章测试零碎集成技术.ppt电子测量原理教材勘误表.doc
1
电子科技大学-詹惠琴-电子测量原理第1章测量的基本原理.ppt第2章测量方法与测量零碎.ppt第3章测量误差及数据处理.ppt第4章时间频率测量.ppt第5章电压测量.ppt第6章阻抗测量.ppt第7章信号波形测量(new).ppt第8章信号的产生.ppt第9章信号分析和频域测量(新).ppt第10章线性零碎频率特性测量和网络分析(新).ppt第11章数字零碎测试技术.ppt第12章测试零碎集成技术.ppt电子测量原理教材勘误表.doc
1
共 128 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡