Q-learningwithepsilon-greedyexploreAlgorithmforDeterministicCleaningRobotV1确定性清洁机器人MDP清洁机器人必须收集用过的罐子也必须为其充电电池。
状态描述了机器人的位置和动作描述运动的方向。
机器人可以向左移动或向左移动正确的。
第一个(1)和最后(6)个状态是终端状态。
目标是找到最大化报答的最优策略从任何初始状态。
这里是Q-learningepsilon-greedy探索使用算法(在强化学习中)。
算法2-3,来自:@book{busoniu2010reinforcement,title={使用函数逼近器的强化学习和动态规划},作者={Busoniu,Lucian和Babuska,Robert和DeSchutter,Bart和Ernst,Damien
2018/5/18 20:31:30 3KB matlab
1
文件中给出案例数据,列代表指标集(输入集x:1-7,输出集y:8)行代表数据集。
可以用于本科毕业论文或者硕士毕业论文,首先使用SPSS进行出成分分析,然后将主成分得分值作为输入集,输出集保持不变。
通过该算法文件就可以得到预测值,具体步骤可以参考《基于SVM和LS-SVM的住宅工程造价预测研究》。
本算法使用BP神经网络的误差函数作为GWO算法的适应度函数,通过BP神经网络连接权值和阈值的数量来决定GWO算法中灰狼的维数,那么GWO算法寻优的过程就是权值和阈值更新的过程。
因而,GWO算法寻优的过程替代了BP神经网络梯度下降的过程。
经过不断更新和迭代,最终确定出全局最优值,即灰狼α所处的位置。
本算法输出的权值和阈值即作为神经网络的权值和阈值,不在通过神经网络继续训练。
可以参考文献《基于粒子群优化算法的BP网络学习研究》。
2019/11/18 17:14:58 13KB 灰狼算法 神经网络
1
数据结构算法与应用-C++语言描述目录译者序前言第一部分预备知识第1章C++程序设计11.1引言11.2函数与参数21.2.1传值参数21.2.2模板函数31.2.3引用参数31.2.4常量引用参数41.2.5返回值41.2.6递归函数51.3动态存储分配91.3.1操作符new91.3.2一维数组91.3.3异常处理101.3.4操作符delete101.3.5二维数组101.4类131.4.1类Currency131.4.2使用不同的描述方法181.4.3操作符重载201.4.4引发异常221.4.5友元和保护类成员231.4.6增加#ifndef,#define和#endif语句241.5测试与调试241.5.1什么是测试241.5.2设计测试数据261.5.3调试281.6参考及推荐读物29第2章程序功能302.1引言302.2空间复杂性312.2.1空间复杂性的组成312.2.2举例352.3时间复杂性372.3.1时间复杂性的组成372.3.2操作计数372.3.3执行步数442.4渐进符号(O、健?、o)552.4.1大写O符号562.4.2椒?582.4.3符号592.4.4小写o符号602.4.5特性602.4.6复杂性分析举例612.5实际复杂性662.6功能测量682.6.1选择实例的大小692.6.2设计测试数据692.6.3进行实验692.7参考及推荐读物74第二部分数据结构第3章数据描述753.1引言753.2线性表763.3公式化描述773.3.1基本概念773.3.2异常类NoMem793.3.3操作793.3.4评价833.4链表描述863.4.1类ChainNode和Chain863.4.2操作883.4.3扩充类Chain913.4.4链表遍历器类923.4.5循环链表933.4.6与公式化描述方法的比较943.4.7双向链表953.4.8小结963.5间接寻址993.5.1基本概念993.5.2操作1003.6模拟指针1023.6.1SimSpace的操作1033.6.2采用模拟指针的链表1063.7描述方法的比较1103.8应用1113.8.1箱子排序1113.8.2基数排序1163.8.3等价类1173.8.4凸包1223.9参考及推荐读物127第4章数组和矩阵1284.1数组1284.1.1抽象数据类型1284.1.2C++数组1294.1.3行主映射和列主映射1294.1.4类Array1D1314.1.5类Array2D1334.2矩阵1374.2.1定义和操作1374.2.2类Matrix1384.3特殊矩阵1414.3.1定义和应用1414.3.2对角矩阵1434.3.3三对角矩阵1444.3.4三角矩阵1454.3.5对称矩阵1464.4稀疏矩阵1494.4.1基本概念1494.4.2数组描述1494.4.3链表描述154第5章堆栈1615.1抽象数据类型1615.2派生类和继承1625.3公式化描述1635.3.1Stack的效率1645.3.2自定义Stack1645.4链表描述1665.5应用1695.5.1括号匹配1695.5.2汉诺塔1705.5.3火车车厢重排1725.5.4开关盒布线1765.5.5离线等价类问题1785.5.6迷宫老鼠1805.6参考及推荐读物188第6章队列1896.1抽象数据类型1896.2公式化描述1906.3链表描述1946.4应用1976.4.1火车车厢重排1976.4.2电路布线2016.4.3识别图元2046.4.4工厂仿真2066.5参考及推荐读物217第7章跳表和散列2187.1字典2187.2线性表描述2197.3跳表描述2227.3.1理想情况2227.3.2插入和删除2237.3.3级的分配2247.3.4类SkipNode2247.3.5类SkipList2257.3.6复杂性2297.4散列表描述2297.4.1理想散列2297.4.2线性开型寻址散列2307.4.3链表散列2347.5应用——文本压缩2387.5.1LZW压缩2397.5.2LZW压缩的实现2397.5.3LZW解压缩2437.5.4LZW解压缩的实现2437.6参考及推荐读物247第8章二叉树和其他树2488.1树2488.2二叉树2518.3二叉树的特性2528.4二叉树描述2538.4.1公式化描述2538.4.2链表描述2548.5二叉树常用操作2568.6二叉树遍历2568.7抽象数据类型BinaryTree2598.8类BinaryTree2608.9抽象数据类型及类的扩充2638.9.1输出2638.9.2删除2648.9.3计算高度2648.9.4统计节点数2658.10应用2658.10.1设置信号放大器2658.10.2在线等价类2688.11参考及推荐读物275第9章优先队列2769.1引言2769.2线性表2779.3堆2789.3.1定义2789.3.2最大堆的插入2799.3.3最大堆的删除2799.3.4最大堆的初始化2809.3.5类MaxHeap2819.4左高树2859.4.1高度与宽度优先的最大及最小左高树2859.4.2最大HBLT的插入2879.4.3最大HBLT的删除2879.4.4合并两棵最大HBLT2879.4.5初始化最大HBLT2899.4.6类MaxHBLT2899.5应用2939.5.1堆排序2939.5.2机器调度2949.5.3霍夫曼编码2979.6参考及推荐读物302第10章竞?30310.1引言30310.2抽象数据类型WinnerTree30610.3类WinnerTree30710.3.1定义30710.3.2类定义30710.3.3构造函数、析构函数及Winner函数30810.3.4初始化赢者树30810.3.5重新组织比赛31010.4输者树31110.5应用31210.5.1用最先匹配法求解箱子装载问题31210.5.2用相邻匹配法求解箱子装载问题316第11章搜索树31911.1二叉搜索树32011.1.1基本概念32011.1.2抽象数据类型BSTree和IndexedBSTree32111.1.3类BSTree32211.1.4搜索32211.1.5插入32311.1.6删除32411.1.7类DBSTree32611.1.8二叉搜索树的高度32711.2AVL树32811.2.1基本概念32811.2.2AVL树的高度32811.2.3AVL树的描述32911.2.4AVL搜索树的搜索32911.2.5AVL搜索树的插入32911.2.6AVL搜索树的删除33211.3红-黑树33411.3.1基本概念33411.3.2红-黑树的描述33611.3.3红-黑树的搜索33611.3.4红-黑树的插入33611.3.5红-黑树的删除33911.3.6实现细节的考虑及复杂性分析34311.4B-树34411.4.1索引顺序访问方法34411.4.2m叉搜索树34511.4.3m序B-树34611.4.4B-树的高度34711.4.5B-树的搜索34811.4.6B-树的插入34811.4.7B-树的删除35011.4.8节点结构35311.5应用35411.5.1直方图35411.5.2用最优匹配法求解箱子装载问题35711.5.3交叉分布35911.6参考及推荐读物363第12章图36512.1基本概念36512.2应用36612.3特性36812.4抽象数据类型Graph和Digraph37012.5无向图和有向图的描述37112.5.1邻接矩阵37112.5.2邻接压缩表37312.5.3邻接链表37412.6网络描述37512.7类定义37612.7.1不同的类37612.7.2邻接矩阵类37712.7.3扩充Chain类38012.7.4类LinkedBase38112.7.5链接类38212.8图的遍历38612.8.1基本概念38612.8.2邻接矩阵的遍历函数38712.8.3邻接链表的遍历函数38812.9语言特性38912.9.1虚函数和多态性38912.9.2纯虚函数和抽象类39112.9.3虚基类39112.9.4抽象类和抽象数据类型39312.10图的搜索算法39412.10.1宽度优先搜索39412.10.2类Network39512.10.3BFS的实现39512.10.4BFS的复杂性分析39612.10.5深度优先搜索39712.11应用39912.11.1寻找路径39912.11.2连通图及其构件40012.11.3生成树402第三部分算法设计方法第13章贪婪算法40513.1最优化问题40513.2算法思想40613.3应用40913.3.1货箱装船40913.3.20/1背包问题41013.3.3拓扑排序41213.3.4二分覆盖41513.3.5单源最短路径42113.3.6最小耗费生成树42413.4参考及推荐读物433第14章分而治之算法43414.1算法思想43414.2应用44014.2.1残缺棋盘44014.2.2归并排序44314.2.3快速排序44714.2.4选择45214.2.5距离最近的点对45414.3解递归方程46214.4复杂性的下限46314.4.1最小最大问题的下限46414.4.2排序算法的下限465第15章动态规划46715.1算法思想46715.2应用46915.2.10/1背包问题46915.2.2图像压缩47115.2.3矩阵乘法链47615.2.4最短路径48015.2.5网络的无交叉子集48315.2.6元件折叠48615.3参考及推荐读物491第16章回溯49216.1算法思想49216.2应用49616.2.1货箱装船49616.2.20/1背包问题50316.2.3最大完备子图50616.2.4旅行商问题50816.2.5电路板排列510第17章分枝定界51617.1算法思想51617.2应用51917.2.1货箱装船51917.2.20/1背包问题52617.2.3最大完备子图52817.2.4旅行商问题52917.2.5电路板排列532
2019/2/11 7:56:36 11.23MB 数据结构
1
针对BP神经网络训练过程易陷入局部极值导致训练误差收敛速度慢的问题,提出将具有全局寻优的萤火虫算法,结合BP算法共同训练神经网络。
在本质上,萤火虫BP神经网络利用萤火虫算法对神经网络进行早期训练,避开局部极值点,得到优化后的神经网络初始权值后,利用BP算法的局部寻优特性对网络做进一步精细训练。
轴承毛病实验表明,萤火虫BP神经网络的训练误差收敛速度相比BP神经网络、萤火虫神经网络显著提升,毛病识别率最高达到99.47%。
1
个人辛苦编写的PSO粒子群优化算法python程序代码,将适应度值计算部分更换成自己要优化的内容,稍加调试即可运行。
粒子群优化算法(PSO:Particleswarmoptimization)是一种进化计算技术(evolutionarycomputation)。
源于对鸟群捕食的行为研究。
粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。
PSO的优势:在于简单容易实现并且没有许多参数的调理。
目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。
2017/8/8 9:37:48 3KB python 算法 开发语言 粒子群
1
今天来学习变量优化问题。
寻找使成本函数最小的题解。
适用于题解相互独立的情况,设计随机优化算法、爬山法、模拟退火算法、遗传算法。
优化问题的的精髓是:1、将题解转化为数字序列化,可以写出题解范围。
2、成本函数能返回值问题场景:所有乘客从不同的地方飞到同一个目的地,服务人员等待所有人到来以后将人一次性接走。
离开时,服务人员将人一次性带到飞机场,所有乘客等待自己的航班离开。
要处理的问题:如何设置乘客的到来和离开航班,以及接送机的时间,使得总代价最小。
将题解设为数字序列。
数字表示某人乘坐的第几次航班,从0开始,例如[1,4,3,2,7,3,6,3,2]表示第1个人做第
2019/2/25 18:01:13 116KB des算法 domain origin
1
带时间窗的团队定向成绩是一类重要的物流配送路径优化成绩,其优化目标是制定最优可行车辆路线,在规定的时间窗内服务一组顾客,以获得最大的总收益。
提出了一类改进蚁群算法,用以求解该成绩。
为了提高解构造质量与效率,使用一种快速的方法来确定动态候选链表,并且利用串行法和贪婪法构造解。
与迭代局部搜索相比,所提算法能够在12s内得到更好的解。
2021/4/23 8:33:26 245KB 工程技术 论文
1
-在原始BES算法的基础上添加了两种改进策略-改进1:将原先固定的控制因子变为自顺应控制因子,从而平衡算法前期的全局搜索能力和后期的局部寻优能力-改进2:采用折射反向学习机制增加寻找到最优解的概率,提升算法的求解精度和收敛速度-仿真图中包含改进后的IBES算法与原始BES算法的比较-包含23种测试函数
2021/5/9 21:55:33 511KB BES
1
matlab终止以下代码分布式遗传算法(DGA)内容概述分布式遗传算法(DGA)是MATLAB脚本,其中包含搜索最佳/次优单极性二进制代码序列(以下称为遗传优化代码(GO-code))所需的所有功能,旨在提供最大可能的编码增益。
在此脚本中,一组输入参数是可调的,其中能量增强因子F_E可以根据给定系统进行修改。
与搜索过程相关的其他参数是固定的(请参阅“输入参数”一节),这归功于DGA的鲁棒性,它们在不同的搜索目标中保持高效。
另外,在演示中,我们提供了一种衰减趋势,以考虑到EDFA增益饱和,从而对代码序列包络进行衰减。
在实际系统中,这种衰减趋势由EDFA的规格确定,可以通过测量编码序列来估计。
系统要求硬体需求DGA只需要一台具有足够内存以支持内存中操作的标准计算机。
为了获得最佳功能,我们建议您使用以下规格的计算机:内存:16+GBCPU:4+核心,2.5+GHz/核心以下运行时来自具有推荐规格的计算机(16GB,4核@2.5GHz)。
软件需求DGA通过仅需要工作版本的MATLAB的MATLAB脚本来实现。
我们建议使用高于MATLABR2015
2018/7/14 17:03:04 452KB 系统开源
1
本文主要研究在这种配送方式下的应急配送问题,建立了基于混合蚁群算法的VRPD问题模型,利用蚁群算法,迭代局部搜索算法,聚类分析等方法进行求解。
对于问题一只有配送车辆配送这一模式,建立VRP问题,首先通过floyd算法验证各地点间的最短距离即为直线距离,将问题转换为最佳H圈问题;
之后采用蚁群算法对这问题进行迭代求解,得到配送车辆一次整体配送的最短路径和为582(公里),一次整体配送的最短时间为11.64(小时),并且发现收敛时迭代次数基本小于10次。
对于问题二,在问题一的基础上新增无人机配送的模式,首先对14个地点进行聚类,发现它们属于同一个类;
其次在类中进行分区,考虑到无人机的飞行约束,利用椭圆的几何性质最终分为5个飞行区;
之后采用迭代局部搜索的方式对各飞行区中的点进行重分配,找到最优的配送路线;
最初,采用蚁群算法对路线进行迭代求解,得到一次整体配送的最短时间为6.32(小时),相较问题一时间缩短了近50%。
对于问题三,在问题二的基础上
1
共 857 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡