《现代通信原理》系统、清晰地介绍了通信系统的基本概念、基本原理和基本技术,以及设计与分析的方法。
全书共分10章。
内容包括通信的基本概念、通信系统的组成、分类和性能指标要求、确知信号和随机信号的分析、信道的基本特性和对信号传输的影响、模拟调制系统、数字基带传输系统、数字带通传输系统、模拟信号的数字传输、差错控制原理、同步原理和信道复用原理等
2023/9/29 3:35:08 12.37MB 现代通信原理 樊昌信 书本 课后答案
1
支持c++17特性
2023/9/28 11:56:15 67.28MB gcc/gdb编译调试
1
关于含间隙关节空间机械臂运动特性仿真研究
2023/9/28 3:10:15 1.49MB 仿真研究
1
制备了新的Er3+/Yb3+共掺氟氧硅酸盐微晶玻璃,测试了荧光光谱、吸收光谱。
研究了氟氧化物微晶玻璃中Er3+离子的上转换发光特性,采用Judd-Ofelt理论对样品光谱进行了分析,拟合得到了强度参数,Ω2=4.4756,Ω4=1.0059,Ω6=1.2098。
计算了样品的辐射寿命、跃迁几率、荧光分支比等光谱参数。
结果表明,样品通过热处理形成了氟化物微晶,降低了声子能量,提高了上转换效率。
绿光、红光上转换荧光强度比玻璃样品增强约2到3倍。
Judd-Ofelt理论分析表明Er3+/Yb3+共掺氟氧微晶玻璃具有较高的上转换效率,是制作微型激光器和三维立体显示的优良材料之一。
2023/9/27 15:41:32 1.89MB 材料 微晶玻璃 荧光光谱 吸收光谱
1
最全的模电数电multisim仿真电路实例,只要1积分,包含1-5-1a二极管仿真电路.ms91-5-2稳压管仿真电路.ms91-5-3BJT仿真电路.ms91-5-4aMOSFET仿真电路.ms910-10-1a单相桥式整流电路.ms710-10-2a桥式整流电容滤波电路.ms710-10-3硅稳压管稳压电路.ms710-10-4串联型直流稳压电路.ms710-10-5a三端集成稳压器-a.ms710-10-5b三端集成稳压器-b.ms710_循环计数器.ms92-9-1a单管共射放大电路.ms92-9-1b单管共射放大电路直流通路.ms92-9-2工作点稳定电路.ms92-9-3a共集电极放大电路.ms92-9-4a共基极放大电路.ms92-9-5a共源极放大电路.ms93-5-1aRC高通电路.ms93-5-2aRC耦合单管共射放大电路.ms93D运算放大器应用.ms93D运算放大器应用.ms9(Securitycopy)4-5-1aOTL乙类互补对称电路.ms94-5-2aOTL甲乙类互补对称电路.ms94-5-3a复合管OCL甲乙类互补对称电路.ms94.ms9(Securitycopy)5-7-1长尾式差分放大电路.ms75-7-2恒流源式差分放大电路.ms75.ms9555Astable.ms9555Astable.ms9(Securitycopy)555单稳触发器.ms9555单稳触发器.ms9(Securitycopy)555振荡器(占空比可调).ms9555振荡器(占空比可调).ms9(Securitycopy)6-6-1电流串联负反馈电路.ms76-6-2电压并联负反馈电路.ms76-6-3电压串联负反馈电路.ms76.ms97-7-1a反相比例电路.ms77-7-1b同相比例电路.ms77-7-1c差分比例电路.ms77-7-2三运放数据放大器.ms77-7-3求和电路.ms77-7-4a积分电路.ms774LS194移位寄存器.ms974LS194移位寄存器.ms9(Securitycopy)74LS47译码器.ms974LS47译码器.ms9(Securitycopy)74LS90七进制计数电路.ms974LS90六十进制计数器.ms974LS90六十进制计数器.ms9(Securitycopy)74LS90六进制计数电路.ms974LS90十进制电路.ms974LS90测试电路.ms98-3-1a二阶低通滤波器.ms78-3-2a带通滤波器.ms78-3-3a单限比较器.ms78-3-4a滞回比较器.ms78-3-5a双限比较器.ms78-3-6a集成单限比较器.ms79-6-1aRC串并联网络振荡电路.ms79-6-2a矩形波发生电路.ms79-6-3三角波发生电路.ms7A-5-13aIV分析仪测二极管.ms7A-5-14aIV分析仪测BJT.ms7A-5-15aIV分析仪测FET.ms7A-5-7阻容耦合单管共射放大电路.ms7AC-DC变换器.ms9ADC实例.ms9ADC实例.ms9(Securitycopy)BTL功放.ms9BTL功放.ms9(Securitycopy)D触发器的研究.ms9IDAC测试电路.ms9J-K触发器的研究.ms9LIST.TXTOCL功放.ms9OCL功放.ms9(Securitycopy)OC门应用实验.ms9OC门应用实验.ms9(Securitycopy)OC门测试(74LS22).ms9R-S触发器的研究.ms9RC一阶电路.ms10RF放大器(频谱分析仪).ms9RF放大器(频谱分析仪).ms9(Securitycopy)RF放大器.ms9RF放大器.ms9(Securitycopy)RF放大器(网络分析仪).ms9RF放大器(网络分析仪).ms9(Securitycopy)VCVS.ms9VCVS.ms9(Securitycopy)VDAC原理图.ms9VDAC原理图.ms9(Securitycopy)三态R-S触发器(4043).ms9三态缓冲器测试.ms9三态缓冲器组合电路.ms9三态门应用.ms9三极管的开关特性研究(3D).ms9三极管的高频特性分析.ms9三端稳压源.ms9三角波发生器.ms9三角波发生器.ms9(Securitycopy)三通道总加器实验.ms9三通道总加器实验.ms9(Securitycopy)与非门搭接的逻辑电路.ms9与非门测试
2023/9/27 15:37:35 20.11MB multisim
1
基于低速信号注入法珀(FP)激光器可实现无微波本振光纤无线通信(RoF)上变频技术,但是得到的微波本振频率受到FP激光器中四波混频效率的限制,难以直接实现毫米波载波的RoF上变频。
在注入锁定FP激光器的基础上提出了一种新型的、低成本的在光域直接产生毫米波载波的RoF上变频方案。
由于注入锁定FP激光器过程中的动态载流子特性,上变频得到的载波信号带有正啁啾,故可用负色散介质对载波信号进行脉冲压缩,从而增强高阶谐波分量以完成毫米波载波的无本振RoF上变频。
实验中采用2Gb/s非归零码注入实现了载波为13.9GHz,用2.5Gb/s注入实现了载波分别为13.9GHz和15.4GHz的RoF上变频,并采用上述方案分别实现27.8GHz和30.8GHz的倍频载波分量的增强。
进一步实验验证了用本方案实现载波频率约60GHz可调谐毫米波的无本振RoF上变频的可行性。
2023/9/27 11:58:57 6.23MB 光通信 光纤无线 光学上变 注入锁定
1
使用MATLAB语言仿真实现OFDM基带信号在频率选择性衰落信道条件下的发送与接收。
仿真系统构成:信号输入(为随机比特流)、OFDM调制、仿真信道传输、OFDM解调、信号输出(可能存在误码的比特率);
仿真分析内容:根据输入、输出比特流计算不同信噪比条件下的误码率,并绘制曲线。
对调制的要求:OFDM调制的子载波间隔为15KHz,循环前缀长度及子载波数目可调,各子载波使用QPSK调制。
其它要求: 信道采用3GPPTS36.101给出的ETU300Hz多径信道,并在其上叠加一个信噪比可调的白噪声。
在附录中表2.1-1~表2.1-4和表2.2-1给出的ETU300Hz多径信道了参数。
 能够查看并解释从输入到输出沿路各点信号的时域波形和频域特性图;
能够绘制误码率随信噪比变化的曲线。
 设计梳妆或者块状导频并在接收端完成信道估计与补偿,并与没有信道估计情况下的性能进行分析比较。
2023/9/27 10:25:49 7KB matlab ofdm 多径信道 误码率
1
针对现有方法无法对电力系统故障进行技术上与安全性实验的问题,文中基于MATLAB对电力系统故障进行了建模及仿真分析。
在介绍电力系统故障分析方法的基础上,对单相故障进行理论分析,分析故障点处电压电流之间的关系,建立电力系统同步发电机、变压器模块等主要元件模型,并设置了恰当的仿真参数。
文中以三相短路故障为例,基于该模型对其进行仿真分析,分析端口与故障点电压电流的特性,并将其结果与实际计算结果进行对比。
结果表明,仿真与计算的结果之间具有良好的一致性,验证了该仿真模型的准确性、有效性。
1
光动力学治疗鲜红斑痣(PWS)目前被认为是较为有效的一种新型诊疗技术。
治疗过程中光能量在皮肤中的分布情况对理解、预计和改进鲜红斑痣的临床治疗效果有重要的作用。
基于人体皮肤的组织结构、鲜红斑痣的病理特征、光在皮肤组织中的传输特性以及皮肤各层的组织光学参数,建立了一种具有多层组织结构的鲜红斑痣皮肤光学模型,介绍了该模型中组织光学参数的确定方法。
利用蒙特卡罗方法结合临床数据计算了光能量在鲜红斑痣皮肤中随深度的分布,结果可为临床上如何选择最佳光剂量提供部分参考依据。
利用本模型做进一步的详细完整的计算可以为光动力学治疗鲜红斑痣提供理论支持。
1
讲述地面波传输、天波传输、视距传播和散射传播等方式,着重介绍它们的传播机制传输特性和基本的工程计算方法
2023/9/23 21:05:27 10.12MB 无线
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡