卷积神经网络经典代码,非常详细,可直接运行
2023/7/29 23:01:25 10.76MB 卷积神经网络 深度学习
1
《stableadaptivenncontrol》稳定自适应神经网络控制,这本书在springer上卖300多美元,不过真的相当有用!
2023/7/29 23:26:44 3.51MB 神经网络
1
培训关于批处理AI的分布式培训此仓库是有关如何使用BatchAI以分布式方式训练CNN模型的教程。
涵盖的场景是图像分类,但是该解决方案可以推广到其他深度学习场景,例如分段和对象检测。
图像分类是计算机视觉应用中的常见任务,通常通过训练卷积神经网络(CNN)来解决。
对于具有大型数据集的大型模型,单个GPU的训练过程可能需要数周或数月。
在某些情况下,模型太大,以致于无法在GPU上放置合理的批处理大小。
在这些情况下使用分布式培训有助于缩短培训时间。
在此特定方案中,使用Horovod在ImageNet数据集以及合成数据上训练ResNet50CNN模型。
本教程演示了如何使用三个最受欢迎的深度学习框架来完成此任务:TensorFlow,Keras和PyTorch。
有许多方法可以以分布式方式训练深度学习模型,包括数据同步和基于同步和异步更新的模型并行方法。
当前,最常见的场景是与同步更新并行的数据-这是最容易实现的,并且对于大多数用例而言已经足够。
在具有同步更新的数据并行分布式训练中,该模型在N个硬件设备之间复制,并且一小批训练样本被划分为N个微批次(参见图2)。
每个设备都
1
本文档利用神经网络基于某地的负荷情况进行负荷预测
2023/7/28 1:24:18 49KB BP 神经网络 负荷预测
1
表情识别系统;
所用平台windows10+Anaconda4.2.0(自带python3.5)-tensorflow1.2.1(cpu)-keras2.1.3+opencv-python3.4.0;所用网络,卷积神经网络包含了搭建网络的代码;
由于文件大于240M,就上传到了自己的网盘中;
此次作品为中国大学生计算机设计大赛作品,点击作品文件夹中的GUI1.EXE就可观看作品效果(电脑必须为64位);
源代码在素材源码文件夹中;
请下载链接文件,去网盘中下载
2023/7/27 6:28:22 64B emotion
1
基于Tensorflow下的cnn卷积神经网络实现图像的分类,Tensorflow
2023/7/27 3:14:38 4KB Tensorflow
1
基于灰色理论与神经网络的水质组合预测模型的研究是当前水质预测领域的研究热点之一,国内外众多研究者都在尝试如何将灰色理论与神经网络进行有效组合,以获得更好的预测效果。
因此,本文在借鉴前人的成果基础上,采用串联组合方法分别对基于灰色理论与神经网络的水质组合预测模型、基于灰色理论与神经网络的水质组合预测模型进行了对比研究,同时提出了一种预测效果更佳的基于时间窗口移动技术与神经网络的水质组合预测模型。
首先,本文根据中国环境质量公报(淡水环境)中长江水环境质量状况以及结合重庆市长江流域断面的实际情况筛选出七项水质指标,然后论述了灰色模型、神经网络以及神经网络的相关理论和算法,接着建立了基于灰色理论与神经网络的水质组合预测模型和基于灰色理论与神经网络的水质组合预测模型,并以重庆市长江寸滩断面1998年至2008年的水质数据为例进行了实例测试和结果分析,也对两种组合预测模型的结果进行了对比与讨论,得出了后者预测效果更好等结论。
与此同时,通过以上两种组合预测模型的研究,本文提出了基于时间窗口移动技术与神经网络的水质组合预测模型,并仍以长江寸滩断面为例,经过研究和实例测试表明该模型能够较好的对长江流域寸滩断面的水质进行预测,在整体上其预测效果比前两种组合预测模型更为理想,而且该模型能够较好地应用于水质指标预测和管理中,为河流水质预测提供重要的科学依据。
最后,本文采用基于神经网络的水质评价模型对重庆市长江寸滩各年的水质进行了等级评价,并与中国环境保护部公布的水质评价结果进行了对比分析,其结果表明水质评价结果在一定程度上能够正确地反映长江寸滩当前的水质状况。
1
用DnCNN网络进行图像去噪。
网络中主要使用了批量归一化和ReLU
2023/7/26 18:24:47 1.39MB DnCNN 图像去噪
1
BP神经网络关于多分类的代码源程序,主要是关于四分类的问题
2023/7/26 0:47:48 4KB BP
1
MATLAB环境下用BP神经网络进行数据分类
2023/7/25 21:51:46 117KB BP神经网络
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡