逻辑与计算机设计基础从当代工程观点讲述了逻辑与计算机设计方面的内容,自出版以来已被全球超过25万人使用。
本书以清晰的解释和逐步延伸的实例来帮助读者理解内容,实例涵盖了从简单的组合应用到建立在RISC内核基础上的CISC结构,更加重视培养读者在计算机辅助设计、问题形式化、解决方案验证和问题解决技巧方面的能力。
2023/8/30 20:06:57 22.52MB 数逻
1
基于Java的邮件系统的设计与实现-初稿.doc1序言 11.1系统开发背景 11.2选题的意义 11.3系统简介 22实现技术及开发工具 32.1Java语言简介 32.2Struts2简介 42.3Spring简介 62.4Hibernate简介 72.5MyEclipse开发工具简介 82.6MySQL简介 82.7Tomcat服务器简介 92.8James邮件服务器简介 92.9Jquery简介 102.10电子邮件简介 113系统需求分析 133.1可行性分析 133.1.1经济可行性分析 133.1.2技术可行性分析 143.1.3社会因素可行性分析 143.2功能需求分析 143.3性能需求分析 173.4数据库需求分析 174数据库的设计与实现 194.1数据库的设计 194.1.1概念结构设计 194.1.2逻辑结构设计 204.2数据库的实现 215系统的设计与实现 235.1系统设计的目标 235.2系统设计的思想 235.3系统结构设计 245.4用户登录邮件系统的工作流程 255.5注册新用户信息的工作流程 265.6用户找回密码信息工作流程 275.7用户添加联系人信息工作流程 305.8用户发送电子邮件工作流程 315.9用户查看电子邮件工作流程 326系统测试 356.1单元测试 356.2集成测试 366.3系统测试 387总结与展望 40附录 41参考文献 46致谢 47
1
大学数据库课程设计,要求从需求分析、数据流图、逻辑模型设计,物理结构设计等方面,实现整个数据库物流管理系统
1
火龙果软件工程技术中心  对于大中型信息系统,很难直接进行需求分析设计,需要借助模型来分析设计系统,根据系统调研数据,建立起目标系统的逻辑模型。
在软件工程的历史中,很长时间里人们一直认为需求分析是整个软件工程中最简单的一个步骤,但在过去十年中越来越多的人认识到它是整个过程中最为关键的一个过程。
假如在需求分析时分析者们未能正确地认识到客户的需求的话,那么最后的软件实际上不可能达到客户的要求,或者导致需求的频繁变更,而软件无法在规定的时间里完工。
在需求分析阶段,要对经过可行性分析所确定的系统目标和功能作进一步的详细论述,确定系统“做什么?”的问题,最终建立起目标系统的逻辑模型。
首先是获得当前系统的
2023/8/27 17:25:57 165KB UML业务建模实例分析
1
如果你想了解,阿里的运营到底牛在哪里?来自阿里的运营人小马鱼为你揭秘鲜为人知的阿里运营精髓,构建正统的运营逻辑体系。
让你不追逐速红速死的潮流,按照自己的节奏,成为一个大部分事都有掌控力的全栈运营!
2023/8/27 17:35:17 245.77MB 运营
1
EDA(ElectronicDesignAutomation)电子设计自动化技术作为现代电子技术的核心,它依赖功能强大的计算机,在EDA工具软件平台上,对以硬件描述语言HDL为系统逻辑描述手段完成的设计文件,自动完成逻辑编译,逻辑化简,逻辑分割,逻辑综合,结构综合,以及逻辑优化和仿真测试,直至实现既定的电子线路系统功能。
EDA技术使得设计者的工作仅限于利用软件的方式,即利用既定描述语言和EDA软件来完成对系统硬件功能的实现。
不难理解,EDA技术已不是某一学科的分支,或某种新的技能技术,它应该是一综合性学科,它融合多学科于一体,又渗透于各学科之中,它打破了软件和硬件间的壁垒,使计算机的软件技术与硬件实现、设计效率和产品性能合二为一,它代表了电子设计技术和应用技术的发展方向。
CPLD即复杂可编程逻辑器件,早期CPLD是从GAL的结构扩展而来,但针对GAL的缺点进行了改进,因此可用于各种现实生活中的应用,比如说本次课程设计数字跑表。
2023/8/27 7:16:27 569KB EDA QuartusⅡ CPLD VHDL
1
软件工程;
软件系统分析的任务1)确定对系统的综合要求系统功能要求系统性能要求:可靠性、安全性、响应时间(查询、更新)系统运行要求:环境(硬件、软件、数据库、网络、通信)将来可能的要求:与其他系统的连接2)画出系统的逻辑模型用数据流图、数据字典和加工(或处理)描述3)修正系统的开发计划适当修正计划时期的开发计划中的成本和进度对需求规格说明书的要求1)准确性和一致性。
不能含混不清、前后矛盾。
2)无二义性3)直观、易读和易修改。
采用简单符号、表格和标准图形表示。
2023/8/26 16:36:51 9.83MB 软件工程
1
基于USB2.0控制器逻辑分析仪设计的逻辑分析仪硬件电路。
2023/8/26 3:36:06 596KB USB,逻辑
1
汇编锁硬盘超强代码,毁灭性锁机,谨慎使用
2023/8/25 22:07:29 3KB 22
1
目录诸论第1章TMS320C54x的结构原理1.1TMS320系列DSP芯片概述101.1.1TMS320系列DSP的分类及应用101.1.2TMS320C5000DSP平台111.2TMS320C54xDSP131.2.1TMS320C54x的主要特性131.2.2TMS320C54x的组成框图161.3总线结构181.4存储器191.4.1存储器空间分配201.4.2程序存储器231.4.3数据存储器241.5中央处理单元271.5.1算术逻辑运算单元281.5.2累加器A和B291.5.3桶形移位器311.5.4乘法器/加法器单元321.5.5比较、选择和存储单元331.5.6指数编码器341.5.7CPU状态和控制寄存器341.6数据寻址方式391.6.1立即寻址411.6.2绝对寻址411.6.3累加器寻址411.6.4直接寻址421.6.5间接寻址431.6.6存储器映像寄存器寻址461.6.7堆栈寻址471.7程序存储器地址生成方式481.7.1程序计数器491.7.2分支转移491.7.3调用与返回501.7.4条件操作511.7.5重复操作531.7.6复位操作541.7.7中断551.7.8省电方式591.8流水线601.8.1流水线操作601.8.2延迟分支转移621.8.3条件执行641.8.4双寻址存储器与流水线651.8.5单寻址存储器与流水线671.8.6流水线冲突和插入等待周期671.9在片外围电路711.9.1并行I/O口及通用I/O引脚711.9.2定时器721.9.3时钟发生器741.9.4主机接口781.10串行口831.10.1串行口概述831.10.2标准串行口841.11DMA控制器971.11.1DMA控制器的基本特性971.11.2子地址寻址方式971.11.3DMA通道优先级和使能控制寄存器1001.11.4DMA通道现场寄存器1021.11.5DMA编程举例1081.12外部总线1131.12.1外部总线接口1131.12.2外部总线操作的优先级别1141.12.3等待状态发生器1151.12.4分区切换逻辑1171.12.5外部总线接口定时图1181.12.6复位和IDLE3省电工作方式1201.13TMS320C54x引脚信号说明122第2章指令系统2.1指令的表示方法1302.1.1指令系统中的符号和略语1302.1.2指令系统中的记号和运算符1332.2指令系统1352.2.1指令系统概述1352.2.2指令系统分类135第3章汇编语言程序开发工具3.1TMS320C54x软件开发过程1373.2汇编语言程序的编写方法1393.3汇编语言程序的编辑、汇编和链接过程1413.4COFF的一般概念1433.4.1COFF文件中的段1433.4.2汇编器对段的处理1443.4.3链接器对段的处理1463.4.4COFF文件中的符号1483.5汇编1493.5.1运行汇编程序1493.5.2列表文件1513.5.3汇编命令1543.5.4宏定义和宏调用1543.6链接1563.6.1运行链接程序1563.6.2链接器选项1573.6.3链接器命令文件1583.6.4多个文件的链接164第4章Simulator和CCS集成开发工具的使用方法4.1Simulator的使用方法1694.1.1软件仿真器概述1694.1.2仿真命令1714.1.3仿真器初始化命令文件1744.1.4仿真外部中断1764.2什么是CCS1774.3如何安装和设置CCS1784.3.1CCS对计算机系统的配置要求1784.3.2CCS的安装与设置1784.4CCS窗口介绍1804.4.1CCS窗口示例1804.4.2CCS的菜单栏和快捷菜单1804.4.3CCS的常用工具栏1814.5如何建立工程文件1824.5.1工程文件的建立、打开和关闭1834.5.2在工程文件中添加或删除文件1834.5.3编辑源文件1834.5.4工程的构建1844.6如何调试程序1854.6.1加载可执行文件1854.6.2程序的运行和复位1864.6.3断点设置1874.6.4内存、寄存器和变量操作1884.7如何与外部文件交换数据1914.7
2023/8/25 15:41:47 3.6MB DSP结构 原理 TMS320C54X
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡