自己写的matlab代码TSP,Hopfiled神经网络,代码功力不高见谅
2023/10/11 15:40:04 5KB hopfie TSP
1
资源中包含神经网络、遗传算法、支持向量机、退火算法、粒子群算法等算法matlab源码、工具包及数据集。
1
利用鱼群算法优化BP神经网络权值,本代码包括完整的鱼群算法,BP神经网络算法和运行数据,可以直接运行。
2023/10/10 13:21:14 9KB 鱼群算法 BP神经网络
1
一个简单的matlab神经网络例子,帮助新人学习神经网络参考,非常有效
2023/10/5 2:17:06 35KB matlab 神经网络
1
神经网络在信号处理中的应用,非常不错的资源,给予需要的人
2023/10/4 17:38:38 15.44MB signal proce
1
用动量梯度下降算法训练BP网络使用的主要函数如下:NEWFF——生成一个新的前向神经网络TRAIN——对BP神经网络进行训练SIM——对BP神经网络进行仿真
2023/10/4 2:54:19 890B matlab bp 动量梯度下降
1
概率神经网络(ProbabilisticNeuralNetwork)的网络结构类似于RBF神经网络,但不同的是,PNN是一个前向传播的网络,不需要反向传播优化参数。
这是因为PNN结合了贝叶斯决策,来判断测试样本的类别。
2023/10/3 17:35:01 192KB PNN matlab
1
详细用数学知识推导BP神经网络,清晰描绘了神经网络的原理。
2023/10/2 11:01:24 188KB 神经网络 BP神经网络 深度学习
1
基于集合经验模态分解与Elman神经网络的线椒株高预测
2023/10/1 10:46:28 1.29MB 研究论文
1
#3D_Garment_Tryon_System3D虚拟试衣系统随着网络的普及和虚拟现实技术的发展,三维虚拟试衣技术已成为国内外学术界普遍关注和研究的重要课题。
三维服装虚拟试衣系统(3DGarmentVirtualTry-OnSystem)主要包括四个部分:用户试衣时的人体识别、姿势检测;
三维虚拟人体模型的构建与匹配,三维虚拟衣物模型的构建,三维衣物在虚拟人体的着装试穿。
目前我们在三维试衣系统相关理论的基础上,从研究三维人体、衣物建模理论出发,结合物理模型、图形处理等方法,实现了以上四个部分,并对其中一些关键技术进行了研究。
人体识别和姿势检测的研究方面,针对精准度要求较高的情况,我们采用N-best人体识别模型,用深度置信神经网络来对模型进行训练,能够检测出图片中任意姿势各个身体部件;
针对实时性要求较高的情况,我们采用SVM模型,可以判断出几种常见的人们试衣时的动作。
三维虚拟人体建模中,首先我们建立集成于软件中的人体模型库,主要是使用专用的三维人体造型软件Poser,将其中人体模型导出为OBJ文件,再根据OBJ文件的存储格式,提取出人体曲面的顶点信息,然后采用稀疏表示和三角剖分技术,利用一个个小三角形来逼近人体各部件的曲面;
而用户人体模型则是根据用户输入的人体信息,查找模型库中相匹配的人体模型并进行一定调整,最后结合检测到的用户姿势来展示用户特定的人体模型。
对于虚拟试衣,通过衣片三角剖分优化、二维到三维的转化、三维衣片虚拟缝合,构建了简单的衣物模型,基于碰撞检测技术,研究并实现了衣物虚拟穿在了人体模型身上的真实样子,如有褶皱、垂悬等等效果。
2023/10/1 8:47:53 44.14MB k'
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡