光纤传感器作为一中新型的传感器,具有精度高,抗干扰性强和单点成本低的优点,逐步广泛应用于人们的生活当中。
该书描绘了各种光纤传感器和及相应的技术,使读者能够迅速的了解和掌握光纤传感器。
2019/6/26 9:50:56 32MB fiber optical sensor
1
为了提高生产效率和加工质量,结合圆扣眼锁眼机本身特性,提出了一种圆扣眼锁眼机面线张力检测方法。
该方法采用霍尔传感器实时检测面线张力大小,并输出模拟信号,然后经过信号放大器、模拟信号-数字信号转换后,将信号转换为抗干扰能力更强的数字信号,最后传输给张力信号处理器DSP。
DSP根据比较结果,进行张力调理控制,最终实现面线张力趋于稳定值,从而实现张力实时控制。
实践应用表明,本方法提高了生产效率加工质量。
1
本书是在第3版《MCS:51单片机应用设计》一书的基础上,从应用的角度,详细地引见了MCS:51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序、接口驱动程序以及MCS:51单片机应用系统的设计,并对MCS:51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的引见。
本书突出了选取内容的实用性、典型性。
书中的应用实例,大多来自科研工作及教学实践,且经过检验。
内容丰富、详实。
本书可作为工科院校的本科生、研究生、专科生单片机课程的教材以及毕业设计的参考资料,也可供从事自动控制、智能、仪器、仪表、电力、电子、机电一体化以及各类MCS:51单片机应用的工程技术人员参考。
第1章单片机概述1.1什么是单片机1.2单片机的历史及发展概况1.38位单片机的主要生产厂家和机型1.4单片机的发展趋势1.5单片机的应用1.6MCS-51系列单片机思考题及习题第2章MCS—51单片机的硬件结构2.1MCS-51单片机的硬件结构2.2MCS-51的引脚2.2.1电源及时钟引脚2.2.2控制引脚2.2.3I/O引脚2.3MCS-51的微处理器2.3.1运算器2.3.2控制器2.4MCS-51存储器的结构2.4.1程序存储器2.4.2内部数据存储器2.4.3特殊功能寄存器(SFI{)2.4.4位地址空间2.4.5外部数据存储器2.5并行L/O端口2.5.1P0口2.5.2P1口2.5.3p2口2.5.4P3口2.5.5PO-P3口电路小结2.6时钟电路与时序2.6.1时钟电路2.6.2机器周期和指令周期2.6.3MCS-51的指令时序2.7MCS-51的复位和复位电路2.7.1复位操作2.7.2复位电路思考题及习题第3章MCS—51单片机指令系统3.1指令系统概述3.2指令格式3.3指令系统的寻址方式3.4MCS-51单片机指令系统分类引见3.4.1数据传送类指令3.4.2算术操作类指令3.4.3逻辑运算指令3.4.4控制转移类指令3.4.5位操作指令3.5MCS-51汇编语言的伪指令思考题及习题第4章MCS—51的中断系统4.1中断的概念4.2MCS-51中断系统的结构4.3中断请求源4.4扣断控制4.4.1中断允许寄存器m4.4.2中断优先级寄存器IP4.5中断响应4.6外部中断的响应时间4.7外部中断的触发方式选择4.7.1电平触发方式4.7.2跳沿触发方式4.8中断·清求的撤消4.9中断服务程序的设计4.10多外部中断源系统设计4.10.1定时器/计数器作为外部中断源的使用方法4.10.2中断和查询结合的方法4.10.3用优先权编码器扩展外部中断源思考题及习题第5章MCS—51的定时器/计数器5.1定时器/计数器的结构5.1.1工作方式寄存器TMOD5.1.2定时器/计数器控制寄存器TCON5.2定时器/计数器的4种工作方式5.2.1方式05.2.2方式15.2.3方式25.2.4方式35.3定时器卅数器对外部计数输入信号的要求5.4定时器卅数器编程和应用5.4.1方式0应用5.4.2方式1应用5.4.3方式2的应用5.4.4方式3的应用5.4.5门控制位CATE的应用—测量脉冲宽度5.4.6实时时钟的设计5.4.7运行中读定时器/计数器思考题及习题第6章MCS—51的串行口6.1串行口的结构6.1.1串行口控制寄存器SCON6.1.2特殊功能寄存器PCON6.2串行口的4种工作方式6.2.1方式06.2.2方式16.2.3方式26.2.4方式36.3多机通讯6.4波特率的设定6.4.1波特率的定义6.4.2定时器T1产生波特率的计算6.5串行口的编程和应用6.5.1串行口方式1应用编程(双机通讯)6.5.2串行口方式2应用编程6.5.3串行口方式3应用编程(双机通讯)思考题及习题第7章MCS—51扩展存储器的设计7.1概述7.2系统总线及总线构造7.2.1系统总线7.2.2构造系统总线7.2.3单片机系统的串行扩展技术7.3读写控制、地址空间分配和外部地址锁存器7.3.1存储器扩展的读写控制7.3.2存储器地址空间分配7.3.3外部地址锁存器7.4程序存储器EPROM的扩展7.4.1EPROM芯片引见7.4.2程序存储器的操作时序7.4.3典型的EPRO
1
本自抗扰零碎是参照韩京清老师的自抗扰程序,结合实际,运用到汽车引擎,提高汽车引擎的抗干扰能力
2021/1/16 8:17:10 563B 自抗扰 adrc 汽车 matlab
1
1.扩频通讯变换域抗干扰技术2.给信号加单音和多音干扰测试误码率3.不同Eb/n0下的仿真曲线,仿真时间略长(2h),可以增大步长减少时间
2015/11/23 10:41:04 2KB matlab
1
一种变步长LMS算法的matlab仿真,显示算法的收敛速度和抗干扰才能
2020/1/19 16:25:10 3KB LMS
1
LZ复杂度分析随着人们对非线性方法的分析越加深入,他们发现,虽然关联维度和最大李雅谱诺夫指数在分析脑电时具有一定的协助,但是它们对数据的依赖性太强,对干扰和噪声太敏感,而且要得到可靠的结果需要大量的数据,这对于高度不平稳的脑电波来说无疑是相当大的局限。
科研人员迫切需要一种数据量少且具有一定抗干扰能力的方法,这时LZ复杂度算法应运而生,它是一种表征时间序列里出现新模式的速率的方法。
这个方法最先由Lempel和Ziv提出,因此取名为Lempel-Ziv复杂度。
直到1987年,才由Kaspar和Schuster提出了该算法的计算机实现方法。
对于一个待求字符串S(S1,S2,…,Sn)以及另一个字符串Q(q1,q2,…,qn),SQ表示S和Q的级联,SQ=(S1,S2,…,Sn,q1,q2,…,qn)。
令SQv是SQ减去最后一个字符所得字符串。
判断Q是否是SQv的一个子串,如果Q是SQv的一个子串,说明Q中的字符是可从S复制的,这时把待求序列的下一个字符级联到Q。
如果Q不是SQv的一个子串,则表示Q是插入字符。
这时把Q级联到S,S=SQ,重新构造Q,重复以上过程直到Q取待求序列的最后一位结束。
每次Q级联到S,表明出现一种新模式,用c表示一个字符串中新模式的数量。
例如对于S=(10101010),应用上面的方法可以得到c(8)=3个新模式:1,0,101010。
2015/6/11 5:46:56 528B matlab 医疗信号处理 信息熵
1
跳频通信具有抗干扰、抗截获以及多址组网等优点,在民用通信系统中的应用越来越广泛。
基于FPGA和Si4463,设计并实现了跳频语音通信系统。
首先对跳频通信系统抗干扰功能进行了建模仿真和分析,得到抗全频带干扰和抗跟踪式干扰功能。
提出一种简化的基于TOD(Timeofday)的跳频同步方案,使用本地计数器代替精确时间产生模块(例如GPS模块),降低系统实施复杂性,节约硬件资源和成本。
最后设计并实现了基于FPGA和通用射频收发芯片Si4463的跳频语音通信系统,为复杂环境下民用语音通信提供了可行的方案。
2022/9/6 10:56:37 4.12MB 跳频; 抗干扰; 同步; TOD;
1
本书主要引见了单片机的硬件结构、指令系统、汇编语言程序设计、内部功能及应用、系统扩展与接口技术、单片机应用系统的开发以及抗干扰技术等内容。
2022/9/3 13:08:49 27.71MB 讲义
1
12自由度的四足仿生机器人已经成为足式机器人中的一个重要门类。
通常来说,机器人的复杂度和可靠性成反比关系,而四足机器人较为平衡,比双足人型机器人控制更为简单,比六足昆虫类机器人关节自由度少。
随着液压伺服技术、电机驱动技术和相关控制技术的成熟,四足机器人的障碍通过能力和抗干扰能力迅速提升,让人们重燃对足式机器人面向服务、工业乃至军事领域更大可能性的希冀。
随着相关技术的普及和模块成本降低,四足机器人开始走向普通实验室,本设计旨在制造一台十二自由度的小型电动直驱四足机器人,并探究以对角步态为主的相关步态控制算法,具体工作包括主控板设计制造、电路系统搭建、电机驱动调试、底层驱动代码编写、控制算法仿真移植和应用层环境感知仿真等。
本设计采用盘式外转子无刷电机直接驱动足部关节,并通过矢量控制(FOC)驱动器进行较高精度的位置和扭矩控制。
2020/2/6 7:07:35 3.99MB 四足机器人 电动直驱
1
共 82 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡