简介:
在本文中,我们将深入探讨如何使用Qt框架与Video for Linux 2(V4L2)接口相结合,实现在Linux系统上显示摄像头视频流。
V4L2是Linux内核提供的一种标准接口,用于与视频捕获设备(如摄像头)进行交互,而Qt则是一个跨平台的C++图形用户界面应用程序开发框架。
我们需要了解V4L2的基本概念。
V4L2是V4L(Video4Linux)的升级版,提供了更多的功能,包括对多种视频格式的支持、多设备并发访问以及高级缓冲区管理。
它通过/dev/videoX设备节点与摄像头通信,X为设备编号。
接下来,我们要引入Qt。
Qt库提供了一套完整的图形用户界面工具,包括窗口、控件、布局等,以及多媒体模块(QMultimedia),可以方便地处理音频和视频数据。
在Qt中,我们可以通过QCamera类来操作摄像头,并使用QCameraViewfinder或QVideoWidget来显示视频流。
实现"v4l2摄像头显示视频流"的关键步骤如下:1. **初始化Qt环境**:确保系统已安装Qt库,然后创建一个Qt项目,选择合适的Qt版本和构建系统。
2. **导入相关模块**:在代码中导入必要的Qt模块,如`<QtWidgets>`(用于窗口和控件)、`<QCamera>`(摄像头操作)和`<QCameraViewfinder>`(显示视频流)。
3. **创建QCamera对象**:使用QCamera类创建一个摄像头对象,传入设备ID(通常是"/dev/video0")作为参数。
例如: ```cpp QCamera camera(new QCamera("/dev/video0", this)); ``` 如果需要检测可用摄像头,可以使用`QCameraInfo`类列出所有设备。
4. **设置视频源**:V4L2摄像头作为视频源,可以通过设置`QCamera::setCaptureDevice`方法来实现: ```cpp camera.setCaptureDevice(QCamera::CaptureDevice::DeviceType, "video0"); ```5. **启动相机**:在确保设置正确后,启动相机: ```cpp camera.start(); ```6. **显示视频流**:创建一个`QCameraViewfinder`实例并将其设置为相机的视图finder,然后将视图finder添加到窗口布局中: ```cpp QCameraViewfinder *viewfinder = new QCameraViewfinder(this); camera.setViewfinder(viewfinder); layout->addWidget(viewfinder); // 假设layout是窗口的布局 ```7. **处理错误和状态改变**:为QCamera对象添加信号连接,以便在出现错误或状态改变时进行相应的处理。
8. **关闭相机**:在应用退出或不再需要视频流时,记得停止并释放相机资源: ```cpp camera.stop(); delete camera; ```以上就是使用Qt结合V4L2显示摄像头视频流的基本步骤。
实际应用中可能还需要处理分辨率设置、帧率控制、色彩格式转换等更复杂的细节。
同时,为了保证兼容性和稳定性,可能需要针对不同的硬件和驱动进行适配。
此外,还可以利用QMediaPlayer和QVideoSurfaceFormat等类来实现自定义的视频播放器功能。
通过这些知识,开发者可以构建出功能丰富的摄像头应用,不仅限于简单的视频显示,还能进行录像、图像处理等多种功能。
对于嵌入式系统或者需要在Linux环境下处理摄像头数据的应用来说,Qt结合V4L2是一个高效且灵活的选择。
2025/6/15 19:50:07 12KB
1
简介:
### CAS单点登录服务器配置详解#### 一、CAS单点登录概述CAS(Central Authentication Service)是一种开放源代码的单点登录协议和服务框架,它为Web应用提供了一种简化了的身份验证流程。
通过CAS,用户只需要在一个地方完成登录过程,即可在多个应用间共享登录状态,无需重复登录。
#### 二、CAS服务器安装与配置##### 2.1 安装CAS服务端1. **下载CAS服务端**:首先从官方网址http://www.cas.org/下载最新的CAS服务端压缩包。
2. **部署WAR包**:将下载的WAR包复制到Tomcat的webapps目录下,并将其重命名为`cas.war`。
3. **启动Tomcat**:启动Tomcat服务器,自动解压WAR包,此时会在Tomcat的webapps目录下生成一个名为`cas`的文件夹。
4. **访问CAS**:通过浏览器访问`http://localhost:8896/cas`来测试CAS服务是否正常启动。
##### 2.2 配置CAS使用数据库验证为了实现更安全、更灵活的身份验证机制,我们可以配置CAS使用数据库进行用户身份验证。
具体步骤如下:1. **修改部署配置文件**:打开`cas-server-webapp\WEB-INF\deployerConfigContext.xml`文件,找到`SimpleTestUsernamePasswordAuthenticationHandler`配置项,将其替换为`QueryDatabaseAuthenticationHandler`。
```xml <bean id="authenticationHandler" class="org.jasig.cas.authentication.handler.QueryDatabaseAuthenticationHandler"> <!-- 数据库连接数据源 --> <property name="dataSource" ref="dataSource"/> <!-- 查询语句 --> <property name="sql" value="SELECT password FROM users WHERE username = ?"/> <!-- 密码加密方式 --> <property name="passwordEncoder" ref="passwordEncoder"/> </bean> ```2. **配置数据库连接**:在同一文件中添加一个新的`dataSource` bean来定义数据库连接信息。
```xml <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver"/> <property name="url" value="jdbc:mysql://localhost:3306/casdb"/> <property name="username" value="casuser"/> <property name="password" value="password"/> </bean> ```3. **配置密码加密方式**:继续在同一文件中添加`passwordEncoder` bean来指定密码加密方式,这里使用MD5作为示例。
```xml <bean id="passwordEncoder" class="org.springframework.security.crypto.password.StandardPasswordEncoder"> <constructor-arg value="MD5"/> </bean> ```4. **测试数据库验证**:重启Tomcat服务器,访问CAS服务器页面,使用数据库中的用户名和密码尝试登录,验证是否可以成功登录。
#### 三、CAS工作原理CAS的工作原理主要分为以下几个步骤:1. **用户访问服务**:用户首次访问受保护的资源时,CAS客户端会检测到HTTP请求中缺少ServiceTicket(简称ST),表明用户尚未经过身份验证。
2. **重定向至CAS服务器**:CAS客户端会将用户重定向到CAS服务器进行身份验证,并携带用户的请求URL作为参数(service参数)。
3. **用户认证**:CAS服务器接收到来自用户的认证请求后,引导用户进入登录页面。
用户输入用户名和密码进行登录,若身份验证成功,则CAS服务器通过HTTPS协议返回一个TGC(Ticket-Granting Cookie)给浏览器。
4. **发放ServiceTicket**:CAS服务器生成一个随机的ServiceTicket(简称ST),并将用户重定向回CAS客户端。
5. **验证ServiceTicket**:CAS客户端收到ST后,向CAS服务器验证ST的有效性。
如果验证通过,则允许用户访问受保护资源。
6. **传输用户信息**:CAS服务器验证ST通过后,将用户的相关认证信息发送给CAS客户端。
通过以上步骤,CAS实现了单点登录的功能,极大地提升了用户体验和系统的安全性。
### 四、CAS与HTTPS在配置CAS服务器时,可以选择使用HTTPS协议来增强通信的安全性。
如果选择HTTPS协议,则需要在服务器上配置CAS证书。
证书的创建和导入过程可以参考以下链接:[http://m.blog..net/zrk1000/article/details/51166603](http://m.blog..net/zrk1000/article/details/51166603)### 总结本文详细介绍了如何配置CAS单点登录服务,并重点讲解了如何利用Java代码实现CAS的配置,包括使用数据库进行登录验证的具体步骤。
同时,还阐述了CAS的基本工作原理,帮助读者更好地理解CAS的工作流程和技术细节。
2025/6/15 19:47:19 293KB
1
单片机学习是电子技术领域入门的重要一环,而Proteus作为一款强大的电子电路仿真软件,为初学者提供了直观的实践平台。
本资源“适合单片机初学者的12个Proteus的仿真实例”正是为帮助新手快速掌握单片机工作原理和Proteus使用方法而精心设计的。
1.**Proteus简介**:Proteus是一款集电路设计、元器件库、虚拟仿真于一体的工具,支持多种微控制器,包括常见的51系列、AVR、PIC等。
通过它,用户可以在虚拟环境中实现电路设计、编程、调试,无需实物硬件即可验证电路功能。
2.**单片机基础**:单片机是一种集成化的微处理器,包含CPU、内存、I/O接口等组件,常用于控制各种设备。
初学者应理解单片机的基本结构、工作原理及程序开发流程,如汇编语言或C语言编程。
3.**Proteus仿真流程**:使用Proteus绘制电路原理图,选择合适的元器件;
接着,编写单片机程序,并将程序烧录到虚拟单片机中;
启动仿真,观察电路运行情况,进行调试。
4.**12个仿真实例**:这些实例涵盖了单片机基础应用,可能包括LED灯闪烁、数码管显示、按键输入、串口通信等常见任务。
通过每个实例,初学者可以掌握不同硬件接口的使用和控制,理解单片机与外部设备交互的过程。
5.**LED闪烁**:这是最基础的仿真实例,通过控制单片机的I/O口,实现LED灯的亮灭,理解单片机对外部硬件的控制。
6.**数码管显示**:数码管显示实例让初学者学会如何驱动数码管,显示数字或字符,进一步了解单片机的并行输出。
7.**按键输入**:通过按键输入,学习单片机如何读取外部输入,理解中断概念,掌握中断处理机制。
8.**串口通信**:串口通信实例涉及单片机与电脑或其他单片机之间的数据交换,理解UART协议和波特率设置。
9.**定时器/计数器应用**:学习如何利用单片机内部的定时器/计数器资源,实现定时任务或频率测量等功能。
10.**模拟电路仿真**:部分实例可能包括简单的模拟电路,如RC滤波器、运算放大器等,帮助初学者结合数字电路和模拟电路进行系统设计。
11.**电机控制**:通过控制直流电机或步进电机,理解电机的工作原理和单片机在运动控制中的应用。
12.**LCD显示**:学习如何驱动液晶显示屏(LCD)显示文本或图形,进一步提升单片机的显示能力。
这12个仿真实例旨在逐步引导初学者熟悉Proteus软件,掌握单片机基本操作,为后续的项目开发打下坚实基础。
在实践过程中,除了学习每个实例的代码和电路设计,还应注重理解背后的逻辑和原理,这样才能真正提高自身的单片机编程能力。
2025/6/14 23:56:58 1.14MB
1
###Ledit使用教程与实例说明####一、引言随着集成电路技术的快速发展,越来越多的设计公司致力于将整个系统整合到单一芯片上,这被称为System-on-a-Chip(SoC)技术。
为了培养更多专业人才,各大高校纷纷开设了专用集成电路设计课程。
本文档旨在详细介绍使用TannerPro系列工具中的Ledit进行电路和版图设计的方法。
Ledit是一款功能强大的布局编辑器,广泛应用于集成电路设计领域。
####二、Ledit基础知识#####2.1实验目的及要求-**实验目的**:熟悉Ledit的基本操作界面;
掌握Ledit的主要功能,包括创建、编辑和修改版图;
理解如何使用Ledit进行版图设计和优化。
-**实验要求**:了解Ledit的基本概念;
掌握Ledit的使用方法;
能够独立完成简单的版图设计任务。
#####2.2相关知识-**Ledit概述**:Ledit是TannerEDA提供的布局编辑器之一,主要用于绘制和编辑集成电路的物理版图。
它可以与TannerEDA的其他工具(如S-Edit和T-Spice)无缝集成,实现电路设计和模拟的全流程。
-**主要功能**:Ledit支持多种层定义和颜色设置;
提供丰富的绘图工具,如线条、矩形、圆等;
具备层间检查和错误修正功能;
能够导出多种格式的版图文件。
-**工作流程**:通常情况下,设计人员会先使用S-Edit完成电路图的设计,然后在Ledit中根据电路图绘制对应的物理版图,最后使用T-Spice对版图进行电气特性模拟。
#####2.3实验内容-**实验准备**:安装TannerPro工具包,确保Ledit等组件正确安装;
准备必要的参考文档或教程。
-**基本操作**:-启动Ledit,熟悉主界面布局。
-创建新的版图文件,设置层定义和颜色。
-使用绘图工具绘制简单的版图元素。
-学习如何移动、复制、旋转和缩放版图元素。
-执行层间检查,修复可能存在的错误。
-**高级功能**:-掌握批量编辑工具,提高设计效率。
-学习如何使用脚本自动化重复性高的设计任务。
-了解如何与其他TannerEDA工具配合使用,实现完整的电路设计流程。
#####2.4随堂练习-练习1:绘制一个简单的CMOS反相器版图。
-练习2:根据提供的电路图,在Ledit中绘制对应的物理版图,并使用T-Spice进行性能模拟。
-练习3:使用Ledit的高级功能优化版图布局,减少面积并改善电气特性。
#####2.5说明-在使用Ledit进行版图设计时,需要注意遵守特定的设计规则,以确保最终产品的可靠性和性能。
-设计过程中可能会遇到各种问题,如DRC错误等,需学会如何排查和解决这些问题。
#####2.6实验报告及要求-**实验报告**:总结实验过程中的所学知识,包括使用的具体工具和技术;
记录实验过程中遇到的问题及其解决方案;
分析版图设计的优劣点,提出改进建议。
-**报告要求**:实验报告应当结构清晰、逻辑严谨;
图表清晰,标注准确;
文字描述简洁明了,避免冗余。
####三、实例说明以下是一个具体的Ledit使用示例,用于指导学生如何完成一个简单的CMOS反相器版图设计:1.**准备工作**:-打开Ledit软件。
-创建一个新的项目文件,设置合适的层定义。
2.**版图设计**:-绘制NMOS和PMOS晶体管。
-连接源极、栅极和漏极。
-添加接触孔和金属层。
3.**版图优化**:-调整元件位置,确保足够的间距。
-使用Ledit的高级工具进行布线优化。
-执行DRC检查,修正错误。
4.**性能模拟**:-将设计好的版图文件导入T-Spice进行模拟。
-分析输出波形,评估电路性能。
-根据模拟结果调整版图设计,直至满足性能要求。
通过本教程的学习,学生将能够熟练掌握Ledit的基本操作,并能够在实际项目中运用这些技能进行高效的电路版图设计。
此外,学生还将了解到集成电路设计的全流程,从电路图设计到物理版图的实现,再到最终的性能模拟与优化。
这对于培养未来的集成电路设计师来说至关重要。
2025/6/13 11:58:24 956KB ledit
1
在ubuntu软件中心安装的eclipse启动存在异常,需要在plugins中加入这个文件才能正常启动
2025/6/12 15:43:18 1.3MB eclipse
1
华为光猫工具.恢复初始设置.上传固件.运行这个exe程序,选择“维修使能”,并选择连接到光猫的网卡,接着点启动即可
2025/6/11 21:27:06 2MB 华为光猫工具
1
应用Socket编程实现一个简单的网络聊天程序。
聊天框架由客户端和服务器端组成,服务器连接、消息接收以及关闭等功能。
是通过建立基于对话框的MFC工程文件来实现编程,并支持windowsocket。
重点在于整体的设计是基于对话框和类的。
先进行对话框的布局以及各个控件属性的设置,再为控件添加响应函数和成员变量。
客户端和服务器端整合到一个对话框,利用设置radiobutton可以对两者进行切换,并写入相应的程序代码。
客户端对应“连接”按钮,服务器端对应“监听”按钮。
为其添加socket类和相应的代码。
添加类相应的各代码后,进行客户端和服务器端的连接。
编译启动时,启动两份,分别选择客户端和服务器端就可以进行对话了。
1
1.软件启动后,会自动搜索可用的串口,可以显示详细的串口信息,由于兼容性原因某些电脑可能不会显示。
2.超高波特率接收,在硬件设别支持的情况下,可自定义波特率,点“自定义”即可输入您想要的波特率,不过需要在串口关闭的情况下,才能修改哦。
默认可选波特率为1200bps-1382400bps3.可以选择为“1、1.5、2”三种停止位.4.可以选择“5、6、7、8”四种数据长度5.可选奇,偶校验,或无校验6.支持串口随时插拔,对于某些硬件设别,由于驱动兼容性的原因可能不支持,实测CH340无问题,建议手动关闭串口
2025/6/9 20:40:43 4.28MB 串口驱动
1
1.进去server文件夹,在终端输入"./server"启动服务器程序2.进入client文件夹,在终端输入"./client"启动客户端程序,在连接服务器窗口可不必输入端口号。
(由于能力有限,未对ip地址的输入格式作限制,希望你们能够通过使用正则表达式来完善本程序)声明:本人精力有限,暂做到这,肯定还不完善,希望大家一起更正
2025/6/8 21:46:03 582KB linux
1
视点变换,旋转,加速减速,星空背景太阳,光晕各行星纹理#include#include#include#include#include#include#include#pragmacomment(lib,"winmm.lib")#pragmacomment(lib,"wininet")//纹理图像结构typedefstruct{intimgWidth;//纹理宽度intimgHeight;//纹理高度unsignedcharbyteCount;//每个象素对应的字节数,3:24位图,4:带alpha通道的24位图unsignedchar*data;//纹理数据}TEXTUREIMAGE;//BMP文件头#pragmapack(2)typedefstruct{unsignedshortbfType;//文件类型unsignedlongbfSize;//文件大小unsignedshortbfReserved1;//保留位unsignedshortbfReserved2;//保留位unsignedlongbfOffBits;//数据偏移位置}BMPFILEHEADER;#pragmapack()//BMP信息头typedefstruct{unsignedlongbiSize;//此结构大小longbiWidth;//图像宽度longbiHeight;//图像高度unsignedshortbiPlanes;//调色板数量unsignedshortbiBitCount;//每个象素对应的位数,24:24位图,32:带alpha通道的24位图unsignedlongbiCompression;//压缩unsignedlongbiSizeImage;//图像大小longbiXPelsPerMeter;//横向分辨率longbiYPelsPerMeter;//纵向分辨率unsignedlongbiClrUsed;//颜色使用数unsignedlongbiClrImportant;//重要颜色数}BMPINFOHEADER;//定义窗口的标题、宽度、高度、全屏布尔变量#defineWIN_TITLE"模拟太阳系各星球的转动"constintWIN_WIDTH=800;constintWIN_HEIGHT=600;BOOLisFullScreen=FALSE;//初始不为全屏#defineDEG_TO_RAD0.017453floatangle=0.0;staticGLdoubleviewer[]={0,0,0,0,0};//初始化视角GLUquadricObj*quadric;//建立二次曲面对象GLfloatangle_Z;//星空旋转角度boolg_bOrbitOn=true;//控制转动暂停floatg_fSpeedmodifier=1.0f;//时间控制floatg_fElpasedTime;doubleg_dCurrentTime;doubleg_dLastTime;GLfloatLightAmbient[]={1.0f,1.0f,1.0f,0.0f};//环境光参数GLfloatLightDiffuse[]={1.0f,1.0f,1.0f,0.0f};//漫射光参数GLfloatLightPosition[]={0.0f,0.0f,0.0f,1.0f};//光源的位置//纹理图象TEXTUREIMAGEskyImg;TEXTUREIMAGEsunImg;TEXTUREIMAGErayImg;TEXTUREIMAGEmercuImg;TEXTUREIMAGEvenusImg;TEXTUREIMAGEearthImg;TEXTUREIMAGEmarsImg;TEXTUREIMAGEjupiterImg;TEXTUREIMAGEsaturnImg;TEXTUREIMAGEuranusImg;TEXTUREIMAGEneptuneImg;TEXTUREIMAGEmoonImg;GLuinttexture[12];//纹理数组//星球速度定义staticfloatfSunSpin=0.0f;//太阳自转速度staticfloatfMercuSpin=0.0f;//水星自转速度staticfloatfMercuOrbit=0.0f;//水星公转速度staticfloatfVenusSpin=0.0f;//金星自转速度staticfloatfVenusOrbit=0.0f;//金星公转速度staticfloatfEarthSpin=0.0f;//地球自转速度staticfloatfEarthOrbit=0.0f;//地球公转速度staticfloatfMarsSpin=0.0f;//火星自转速度staticfloatfMarsOrbit=0.0f;//火星公转速度staticfloatfJupiterSpin=0.0f;//木星自转速度staticfloatfJupiterOrbit=0.0f;//木星公转速度staticfloatfSaturnSpin=0.0f;//土星自转速度staticfloatfSaturnOrbit=0.0f;//土星公转速度staticfloatfUranusSpin=0.0f;//天王星自转速度staticfloatfUranusOrbit=0.0f;//天王星公转速度staticfloatfNeptuneSpin=0.0f;//海王星自转速度staticfloatfNeptuneOrbit=0.0f;//海王星公转速度staticfloatfMoonSpin=0.0f;//月亮自转速度staticfloatfMoonOrbit=0.0f;//月亮公转速度voidMakeTexture(TEXTUREIMAGEtextureImg,GLuint*texName)//转换为纹理{glPixelStorei(GL_UNPACK_ALIGNMENT,1);//对齐像素字节函数glGenTextures(1,texName);//第一个参数指定表明获取多少个连续的纹理标识符glBindTexture(GL_TEXTURE_2D,*texName);glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,textureImg.imgWidth,textureImg.imgHeight,0,GL_RGB,GL_UNSIGNED_BYTE,textureImg.data);}//初始化OpenGLvoidInitGL(void){glClearColor(0.0f,0.0f,0.0f,0.5f);//设置黑色背景glClearDepth(2.0f);//设置深度缓存glEnable(GL_DEPTH_TEST);//启动深度测试glDepthFunc(GL_LEQUAL);//深度小或相等的时候渲染glShadeModel(GL_SMOOTH);//启动阴影平滑glEnable(GL_CULL_FACE);//开启剔除操作效果glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);//使用质量最好的模式指定颜色和纹理坐标的插值质量glLightfv(GL_LIGHT1,GL_AMBIENT,LightAmbient);//设置环境光glLightfv(GL_LIGHT1,GL_DIFFUSE,LightDiffuse);//设置漫反射光glEnable(GL_LIGHTING);//打开光照glEnable(GL_LIGHT1);//打开光源1//载入纹理glEnable(GL_TEXTURE_2D);//开启2D纹理映射MakeTexture(skyImg,&texture;[0]);MakeTexture(sunImg,&texture;[1]);MakeTexture(rayImg,&texture;[2]);MakeTexture(mercuImg,&texture;[3]);MakeTexture(venusImg,&texture;[4]);MakeTexture(earthImg,&texture;[5]);MakeTexture(marsImg,&texture;[6]);MakeTexture(jupiterImg,&texture;[7]);MakeTexture(saturnImg,&texture;[8]);MakeTexture(uranusImg,&texture;[9]);MakeTexture(neptuneImg,&texture;[10]);MakeTexture(moonImg,&texture;[11]);quadric=gluNewQuadric();//建立一个曲面对象指针gluQuadricTexture(quadric,GLU_TRUE);//建立纹理坐标gluQuadricDrawStyle(quadric,GLU_FILL);//面填充}voidDisplay(void){glLoadIdentity();//设置观察点的位置和观察的方向gluLookAt(viewer[0],viewer[1],viewer[2],viewer[3],viewer[4],-5,0,1,0);//摄像机x,摄像机y,摄像机z,目标点x,目标点y,目标点z,摄像机顶朝向x,摄像机顶朝向y,摄像机顶朝向z//获得系统时间使太阳系有动态效果g_dCurrentTime=timeGetTime();g_fElpasedTime=(float)((g_dCurrentTime-g_dLastTime)*0.0005);g_dLastTime=g_dCurrentTime;glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);glMatrixMode(GL_MODELVIEW);//指定GL_MODELVIEW是下一个矩阵操作的目标glTranslatef(0.0f,0.0f,-5.0f);//将坐标系移入屏幕5.0fglRotatef(10,1.0f,0.0f,0.0f);//将坐标系绕x轴旋转10度glEnable(GL_LIGHT0);//打开光源0/**********************************绘制背景星空********************************************/glPushMatrix();//当前模型矩阵入栈glTranslatef(-10.0f,3.0f,0.0f);glRotatef(angle_Z,0.0f,0.0f,1.0f);glEnable(GL_TEXTURE_2D);glBindTexture(GL_TEXTURE_2D,texture[0]);//星空纹理glBegin(GL_QUADS);glNormal3f(0.0f,0.0f,1.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(-50.0f,-50.0f,-50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(50.0f,-50.0f,-50.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(50.0f,50.0f,-50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(-50.0f,50.0f,-50.0f);glEnd();glBegin(GL_QUADS);glNormal3f(0.0f,0.0f,-1.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(-50.0f,-50.0f,50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(50.0f,-50.0f,50.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(50.0f,50.0f,50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(-50.0f,50.0f,50.0f);glEnd();glBegin(GL_QUADS);glNormal3f(0.0f,1.0f,0.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(-50.0f,-50.0f,-50.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(50.0f,-50.0f,50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(50.0f,-50.0f,-50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(-50.0f,-50.0f,50.0f);glEnd();glBegin(GL_QUADS);glNormal3f(0.0f,-1.0f,0.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(-50.0f,50.0f,-50.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(50.0f,50.0f,50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(50.0f,50.0f,-50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(-50.0f,50.0f,50.0f);glEnd();glBegin(GL_QUADS);glNormal3f(1.0f,0.0f,0.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(-50.0f,-50.0f,-50.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(-50.0f,50.0f,50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(-50.0f,-50.0f,50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(-50.0f,50.0f,-50.0f);glEnd();glBegin(GL_QUADS);glNormal3f(-1.0f,0.0f,0.0f);glTexCoord2f(6.0f,6.0f);glVertex3f(50.0f,-50.0f,-50.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(50.0f,50.0f,50.0f);glTexCoord2f(6.0f,0.0f);glVertex3f(50.0f,-50.0f,50.0f);glTexCoord2f(0.0f,6.0f);glVertex3f(50.0f,50.0f,-50.0f);glEnd();glPopMatrix();//当前模型矩阵出栈/**********************************绘制太阳************************************************/glBindTexture(GL_TEXTURE_2D,texture[2]);//光晕纹理glEnable(GL_BLEND);//开启混合glDisable(GL_DEPTH_TEST);//关闭深度测试//绘制太阳光晕glDisable(GL_LIGHTING);//关闭光照glBlendFunc(GL_SRC_ALPHA,GL_ONE);//半透明混合函数glColor4f(1.0f,0.5f,0.0f,0.5f);//设置RGBA值glBegin(GL_QUADS);glNormal3f(0.0f,0.0f,1.0f);glTexCoord2f(0.0f,0.0f);glVertex3f(-1.0f,-1.0f,0.0f);glTexCoord2f(1.0f,0.0f);glVertex3f(1.0f,-1.0f,0.0f);glTexCoord2f(1.0f,1.0f);glVertex3f(1.0f,1.0f,0.0f);glTexCoord2f(0.0f,1.0f);glVertex3f(-1.0f,1.0f,0.0f);glEnd();glDisable(GL_BLEND);//关闭混合glEnable(GL_DEPTH_TEST);glEnable(GL_LIGHTING);//开启光照glLightfv(GL_LIGHT1,GL_POSITION,LightPosition);//设置光源1位置glBindTexture(GL_TEXTURE_2D,texture[1]);//太阳纹理//将坐标系绕Y轴旋转fSunSpin角度,控制太阳自转glRotatef(fSunSpin,0.0,1.0,0.0);gluSphere(quadric,0.3f,32,32);//绘制太阳球体/**********************************绘制水星************************************************/glDisable(GL_LIGHT0);glEnable(GL_TEXTURE_2D);//开启纹理glPushMatrix();//当前模型视图矩阵入栈//将坐标系绕Y轴旋转fMercuOrbit角度,控制水星公转glRotatef(fMercuOrbit,0.0f,1.0f,0.0f);glRotatef(-90.0f,1.0f,0.0f,0.0f);//将坐标系绕X轴旋转-90度glTranslatef(0.5f,0.0f,0.0f);//将坐标系右移0.5fglBindTexture(GL_TEXTURE_2D,texture[3]);//水星纹理//将坐标系绕Z轴旋转fMercuSpin角度控制水星自转glRotatef(fMercuSpin,0.0f,0.0f,1.0f);gluSphere(quadric,0.04f,32,32);//水星球体glPopMatrix();//当前模型视图矩阵出栈//绘制轨道glBegin(GL_LINE_LOOP);for(angle=0;angle=-6.0)viewer[0]-=0.5;break;case'u':case'U':if(viewer[1]=-6.0)viewer[1]-=0.1;break;case'+':case'='://加速,减速,暂停g_fSpeedmodifier+=1.0f;glutPostRedisplay();break;case'':g_bOrbitOn=!g_bOrbitOn;glutPostRedisplay();break;case'-'://按'-'减小运行速度g_fSpeedmodifier-=1.0f;glutPostRedisplay();break;caseVK_ESCAPE://按ESC键时退出exit(0);break;default:break;}}voidspecial_keys(ints_keys,intx,inty){switch(s_keys){caseGLUT_KEY_F1://按F1键时切换窗口/全屏模式if(isFullScreen){glutReshapeWindow(WIN_WIDTH,WIN_HEIGHT);glutPositionWindow(30,30);isFullScreen=FALSE;}else{glutFullScreen();isFullScreen=TRUE;}break;caseGLUT_KEY_RIGHT://视角上下左右旋转if(viewer[3]=-3.0)viewer[3]-=0.1;break;caseGLUT_KEY_UP:if(viewer[4]=-4.5)viewer[4]-=0.1;break;default:break;}}voidmouse(intbtn,intstate,intx,inty)//远近视角{if(btn==GLUT_RIGHT_BUTTON&&state==GLUT_DOWN)viewer[2]+=0.3;if(btn==GLUT_LEFT_BUTTON&&state==GLUT_DOWN&&viewer;[2]>=-3.9)viewer[2]-=0.3;}voidLoadBmp(char*filename,TEXTUREIMAGE*textureImg)//载入图片{inti,j;FILE*file;BMPFILEHEADERbmpFile;BMPINFOHEADERbmpInfo;intpixel_size;//初始化纹理数据textureImg->imgWidth=0;textureImg->imgHeight=0;if(textureImg->data!=NULL){delete[]textureImg->data;}//打开文件file=fopen(filename,"rb");if(file==NULL){return;}//获取文件头rewind(file);fread(&bmpFile;,sizeof(BMPFILEHEADER),1,file);fread(&bmpInfo;,sizeof(BMPINFOHEADER),1,file);//验证文件类型if(bmpFile.bfType!=0x4D42){return;}//获取图像色彩数pixel_size=bmpInfo.biBitCount>>3;//读取文件数据textureImg->data=newunsignedchar[bmpInfo.biWidth*bmpInfo.biHeight*pixel_size];for(i=0;idata+(i*bmpInfo.biWidth+j)*pixel_size+2,sizeof(unsignedchar),1,file);//绿色分量fread(textureImg->data+(i*bmpInfo.biWidth+j)*pixel_size+1,sizeof(unsignedchar),1,file);//蓝色分量fread(textureImg->data+(i*bmpInfo.biWidth+j)*pixel_size+0,sizeof(unsignedchar),1,file);//Alpha分量if(pixel_size==4){fread(textureImg->data+(i*bmpInfo.biWidth+j)*pixel_size+3,sizeof(unsignedchar),1,file);}}}//记录图像相关参数textureImg->imgWidth=bmpInfo.biWidth;textureImg->imgHeight=bmpInfo.biHeight;textureImg->byteCount=pixel_size;fclose(file);}//程序主函数voidmain(intargc,char**argv){//读图片LoadBmp("Picture//Sky.bmp",&skyImg;);LoadBmp("Picture//Sun.bmp",&sunImg;);LoadBmp("Picture//Ray.bmp",&rayImg;);LoadBmp("Picture//Mercu.bmp",&mercuImg;);LoadBmp("Picture//Venus.bmp",&venusImg;);//金星LoadBmp("Picture//Earth.bmp",&earthImg;);LoadBmp("Picture//Mars.bmp",&marsImg;);//火星LoadBmp("Picture//Jupiter.bmp",&jupiterImg;);//木星LoadBmp("Picture//Saturn.bmp",&saturnImg;);//土星LoadBmp("Picture//Uranus.bmp",&uranusImg;);//天王星LoadBmp("Picture//Neptune.bmp",&neptuneImg;);//海王星LoadBmp("Picture//Moon.bmp",&moonImg;);glutInit(&argc;,argv);//初始化GLUT库glutInitDisplayMode(GLUT_RGBA|GLUT_DOUBLE|GLUT_DEPTH);//初始化显示模式glutInitWindowSize(WIN_WIDTH,WIN_HEIGHT);//初始化窗口大小glutInitWindowPosition(20,20);//初始化窗口位置GLuintwindow=glutCreateWindow(WIN_TITLE);//建立窗口InitGL();//初始化OpenGLglutDisplayFunc(Display);glutReshapeFunc(Reshape);glutKeyboardFunc(keyboard);glutSpecialFunc(special_keys);glutMouseFunc(mouse);glutIdleFunc(Display);//设置窗口空闲时的处理函数glutMainLoop();//进入事件处理循环}
2025/6/8 20:47:10 3.53MB 三维动画 模拟太阳系
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡