Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。
Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。
2024/7/7 2:35:45 1.72MB multisim
1
翁老的《预测学》。
介绍几个概念吧:翁氏猜想:从2起所有实数都是其他两个质数的平均值;
从3起任何质数可以用无穷个方式表示为其他两个质数之和减去另一个质数。
三元关系理论:三元为抽象体系(集合、公理、关系)、物理体系(时、空、物质)和信息体系(人、机器即是信息处理的主观操作者,又是信息过程中的客观实在)。
传统预测学以数学为基础,只考虑了抽象体系和物理体系的作用关系,应当从三元互动的角度处理信息。
醉汉游走理论:醉汉在原地进一步与退一步的概率是相同的,按照传统数学统计的概念,醉汉在游走无穷步之后应该呆在原地,但翁老认为相反,醉汉应该呆在无穷远。
干支法:这就搞不清了,据说是从古代干支推算中总结出的数学经验。
2024/7/6 21:06:23 4.44MB 翁文波 预测 自然灾害
1
基于径向偏振光的广泛应用,从理论与实验上研究了径向偏振光的产生与传输。
实验上,得用阶跃型相位跃变器在腔外将两束偏振正交的TEM00模光束分别转化为偏振正交的TEM01与TEM10模光束,利用马赫-曾德尔干涉仪将产生的TEM01与TEM10模光束进行相干叠加得到径向偏振光。
理论上,用标量衍射积分对TEM01与TEM10模光束的产生,以及通过相干叠加得到的径向偏振光进行数值模拟。
同时指出实验上的误差对产生径向偏振光的影响,以及研究了传输过程中实验上所获得的径向偏振光光斑的变化。
聚焦径向偏振光可产生极小的焦斑以及纵向场分量,因此有望在粒子加速、高分辨显微镜以及材料加工等方面得到广泛应用。
1
该书已经绝版,高清版作为珍藏。
曾经教我贝叶斯网络的入门教程。
向张连海教授致敬。
本书是第一本系统论述贝叶斯网的基本理论、算法及其应用的中文专著。
内容包括概论论及贝叶斯网基本概念、贝叶斯网推理、贝叶斯网学习,以及贝叶斯网在中医中的应用四大部分。
2024/7/6 6:17:27 16.85MB 贝叶斯网
1
VCWindows核心编程第五版随书源码集,这些例子是很好的学习VC编程的资料,每一个都可以编译运行,对照《VCWindows核心编程》这本书,理论加实践,会有更好的学习效果。
2024/7/5 21:09:02 268KB VC 源码-其它源码
1
应用灰色系统理论,GM(1,1)模型预测松花江未来十年污水排放量。
许多做课程设计的同学都可以用这个来参考。
2024/7/5 4:25:19 3.72MB GM(1 1)
1
写论文的朋友也许有用,书中理论和实例具全,值得研究
2024/7/4 14:26:03 9.43MB 线性和非线性时间序列 电子书
1
有用于农业方向做LS-DYNA仿真,植物切割仿真的同学们可以使用这个模型,里面有详细的数据和理论分析。
2024/7/4 2:42:20 2.92MB LS-DYNA WOOD
1
本书理论联系实际,强调工程观点,在阐明基本原理的基础上介绍计算方法和典型设备,同时适当介绍本学科的新进展。
内容简练,深入浅出,突出重点,便于自学,引导创新。
本书可作为高等院校化工及相关专业的教材,也可供化工及相关部门技术人员参考。
2024/7/3 11:21:03 17.03MB 杨祖荣
1
氙灯抽运将导致钕玻璃内产生不均匀温升,这是产生应力退偏的根本原因。
热致应力退偏效应将直接降低系统效率、影响光束质量,因此确定片内的温度分布以及应力分布,准确预测由此带来的光束退偏特性并合理设计光束填充因子是十分重要的。
介绍了我国第一台单束输出能力超过万焦耳的惯性约束聚变激光驱动器中大口径高通量验证实验平台片状放大器的热致退偏效应,通过理论模拟计算获得了钕玻璃片内三维温升分布、应力分布与由此导致的退偏分布特性,结果表明,片状放大器在5.28%/cm平均小信号增益系数输出的情况下整个光束口径内的应力双折射是很小的,但方光束的四个角部处的应力双折射较严重,最大的退偏量约为0.13%,该结果与劳伦斯·利弗莫尔实验室实验测得的结果基本一致。
输出的激光近场结果表明,片状放大器热致退偏效应可满足大能量装置输出设计要求。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡