根据他励直流电动机启动的特点,在matlab的simulink环境下建立了模型,对直接启动,降压启动,串电阻启动三种情况下进行了仿真,得出了各种的电流、转速和转矩的波形图。
2023/8/14 6:12:06 72KB 他励电动机 仿真
1
开关磁阻电动机(SwitchedReluctanceMotor,简称SRM)调速系统(SwitchedReluctanceMotorDrive,简称SRD)是一种新型的调速系统。
因其结构简单,鲁棒性好,启动转矩大及调速范围宽等特点,日益受到国内外学者的关注.本文着重描述了开关磁阻电动机的非线性数学模型,并通过MATLAB仿真对调速系统进行了仿真,结果表明数学模型与仿真结果基本吻合。
1
第一章....4【实例1】使用累加器进行简单加法运算:...4【实例2】使用B寄存器进行简单乘法运算:...4【实例3】通过设置RS1,RS0选择工作寄存器区1:...4【实例4】使用数据指针DPTR访问外部数据数据存储器:...4【实例5】使用程序计数器PC查表:...4【实例6】if语句实例:...4【实例7】switch-case语句实例:...4【实例8】for语句实例:...4【实例9】while语句实例:...5【实例10】do…while语句实例:...5【实例11】语句形式调用实例:...5【实例12】表达式形式调用实例:...5【实例13】以函数的参数形式调用实例:...5【实例14】函数的声明实例:...5【实例15】函数递归调用的简单实例:...5【实例16】数组的实例:...6【实例17】指针的实例:...6【实例18】数组与指针实例:...6【实例19】P1口控制直流电动机实例...6第二章....8【实例20】用74LS165实现串口扩展并行输入口...8【实例21】用74LS164实现串口扩展并行输出口...10【实例22】P0I/O扩展并行输入口...12【实例23】P0I/O扩展并行输出口...12【实例24】用8243扩展I/O端口...12【实例25】用8255A扩展I/O口...14【实例26】用8155扩展I/O口...19第三章....26【实例29】与AT24系列EEPROM接口及驱动程序...26【实例30】EEPROM(X5045)接口及驱动程序...30【实例31】与铁电存储器接口及驱动程序...33【实例32】与双口RAM存储器接口及应用实例...35【实例33】与NANDFLASH(K9F5608)接口及驱动程序...35第四章....43【实例34】独立键盘控制...43【实例35】矩阵式键盘控制...44【实例36】改进型I/O端口键盘...46【实例37】PS/2键盘的控制...49【实例38】LED显示...53【实例39】段数码管(HD7929)显示实例...54【实例40】16×2字符型液晶显示实例...55【实例41】点阵型液晶显示实例...61【实例42】LCD显示图片实例...63第五章....70【实例43】简易电子琴的设计...70【实例44】基于MCS-51单片机的四路抢答器...71【实例45】电子调光灯的制作...76【实例46】数码管时钟的制作...81【实例47】LCD时钟的制作...96【实例48】数字化语音存储与回放...103【实例49】电子标签设计...112第六章....120【实例50】指纹识别模块...121【实例51】数字温度传感器...121第七章....124【实例53】超声波测距...124【实例54】数字气压计...125【实例55】基于单片机的电压表设计...132【实例56】基于单片机的称重显示仪表设计...133【实例57】基于单片机的车轮测速系统...136第八章....138【实例58】电源切换控制...138【实例59】步进电机控制...140【实例60】单片机控制自动门系统...141【实例61】控制微型打印机...144【实例62】单片机控制的EPSON微型打印头...144【实例63】简易智能电动车...145【实例64】洗衣机控制器...149第九章....152【实例65】串行A/D转换...152【实例66】并行A/D转换...153【实例67】模拟比较器实现A/D转换...154【实例68】串行D/A转换...155【实例69】并行电压型D/A转换...156【实例70】并行电流型D/A转换...156【实例71】file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtmlclip1\01\clip_image002.gif接口的A/D转换...157【实例72】file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtmlclip1\01\clip_image002.gif接口的D/A转换...161第十章....164【实例73】单片机间双机通信...164【实例74】单片机间多机通信方法之一...166【实例75】单片机间多机通信方法之二...171【实例76】PC与单片机通信.
2023/8/13 0:42:44 929KB 51单片机 范例
1
工业与民用的电力传动控制系统中,常采用电动机驱动机械运动,空间矢量脉宽调制SVPWM是一种驱动电动机旋转的高效脉宽调制方式。
本论文详细介绍了空间矢量脉宽调制系统的工作原理及其功能架构,提出了一种基于现场可编程门阵列FPGA的SVPWM发生器的硬件设计方案,并在一片FPGA中得到了具体验证和实现,该方案结合了SVPWM与FPGA的优点,在高性能运动控制系统中有重要的应用价值,为设计高性能的电机控制专用芯片奠定了基础。
2023/8/10 21:22:44 175KB FPGA SVPWM
1
交流永磁同步电动机转速、电流双闭环调速系统仿真模型
2023/7/21 11:11:04 84KB 永磁同步电机 双闭环 PMSM
1
现代直流伺服控制技术及其系统设计目录代序言前言第1章绪论1直流伺服控制技术的发展2现代直流PWM伺服驱动技术的发展2.1国内外发展概况2.2直流PWM伺服驱动装置的工作原理和特点2.3功率控制元件的应用及控制电路集成化2.4PWM系统发展中待研究的问题3现代伺服控制技术展望第2章不可逆直流PWM系统1无制动状态的不可逆PWM系统1.1电流连续时PWM系统控制特性分析1.2电流断续时PWM系统控制特性分析2带制动回路的不可逆PWM系统第3章可逆直流PWM系统1双极模式可逆PWM系统1.1T型双极模式PWM控制原理1.2H型双极模式PWM控制原理1.3双极模式PWM控制特性分析2单极模式可逆PWM系统2.1H型单极模式同频可逆PWM控制2.2H型单极模式倍频可逆PWM控制3受限单极模式可逆PWM系统3.1受限单极模式同频可逆PWM控制系统3.2工作特性的定量分析3.3计算机辅助分析3.4受限单极模式倍频可逆PWM控制4控制方案的对比第4章PWM功率转换电路设计1PWM功率转换用GTR1.1开关特性1.2GTR的功率损耗及PWM功率转换电路对其特性的要求1.3GTR存储时间对PWM系统的影响2GTR的损坏和保护2.1GTR的耐压与损坏2.2GTR的二次击穿和安全工作区2.3GTR暂态保护3达林顿复合型功率模块的应用3.1复合型达林顿模块的电路结构3.2达林顿模块作为开关使用3.3达林顿模块并行驱动3.4达林顿模块的应用4缓冲器设计和负载线整形4.1缓冲器的必要性4.2负载线分析4.3在PWM系统中的缓冲器设计举例第5章PWM系统控制电路1脉宽调制器的一般特性及电路1.1脉宽调制器的一般特性1.2恒频波形发生器1.3脉宽调制器2保护型脉宽调制及脉冲分配电路2.1双门限延迟比较的V/W电路2.2二极管电桥反馈式窗口V/W电路2.3具有阻容延迟的PWM变换电路2.4脉冲分配逻辑延时电路3保护电路3.1电流保护型式与特点3.2保护电流的实时取样和霍尔效应电流检测装置设计3.3欠电压、过电压保护3.4瞬时停电保护3.5保护电路举例4基极驱动电路4.1基极恒流驱动4.2基极电流自适应驱动电路4.3自保护型基极驱动电路4.4典型基极驱动电路5控制电路集成化、模块化5.1一种新型SG1731型PWM集成电路5.2晶体管驱动模块简介5.3应用举例第6章PWM系统工程设计中的有关问题1功率转换电路供电电源的设计问题1.1泵升电压对功率转换电路及供电电源的影响1.2PWM系统中的反馈能量1.3反馈能量的存储及其耗散2PWM系统电流波形系数与电动机的有效出力3PWM开关频率的选择4电枢回路附加电感的设计原则5浪涌电流和电压抑制5.1合闸浪涌电流的抑制5.2浪涌电压吸收第7章PWM系统电磁兼容性设计1电磁干扰模型分析和干扰传递1.1干扰源1.2敏感单元1.3干扰传递方式2抑制或消除干扰的方法2.1PWM功率转换电路中GTR开关干扰源抑制2.2元器件的合理布局与布线2.3接地设计2.4屏蔽与隔离2.5滤波3PWM系统电磁兼容性设计导则3.1电源3.2电动机3.3GTR固态开关3.4开关控制器件3.5模拟电路3.6数字电路3.7微型计算机第8章现代直流伺服控制元件与
2023/7/12 3:46:22 13.04MB 直流伺服 控制 系统设计 秦继荣
1
步进电动机伺服控制技术原理,一本共200多页PDF格式书。
2023/7/8 5:42:15 7.69MB 电机定位
1
针对当前施工升降机在减速和爬行阶段的速度控制性能较差等缺点,介绍了变频器在施工升降机调速系统中可以实现提升机的恒加速和恒减速控制,能很好的防止施工升降机过卷和过放等事故发生,可以实现电动机的软启动,去除了转子串电阻造成的能耗,具有十分明显的节能效果。
克服了转子串电阻调速系统的复杂控制电路,破损率高等缺点,具有很好的应用和推广价值。
1
液体混合装置控制设计报告.doc目录一设计任务及要求2二系统方案设计2三电气控制系统设计3四程序设计3五系统调试4六总结4七附录4八参考文献4液体混合装置控制设计报告一、设计任务及要求(1)设计任务如右图所示:本装置为两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅匀电机。
(2)设计要求①.装置投入运行时,液体A、B阀门关闭,混合液阀门打开20秒将容器放空后关闭。
②.按下起动按钮SB1,装置就开始按下列约定的规律操作:液体A阀门打开,液体A流入容器。
当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。
液面到达SL3时,关闭液体B阀门,搅匀电机开始搅匀。
搅匀电机工作1分钟后停止搅动,混合液体阀门打开,开始放出混合液体。
当液面下降到SL1时,SL1由接通变为断开,再过20秒后,容器放空,混合液阀门关闭,开始下一周期。
③.按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。
④.熟悉各种基本指令,通过本次课程设计熟练掌握PLC编程的技巧,训练应用PLC技术实现一般生产过程控制能力。
二、系统方案设计完成此控制功能需要的元件有:液位传感器SL1、SL2和SL3,YV1,YV2,YV3为电磁阀,M为搅拌机另外还有控制电磁器和电动机的1个交流接触器KM。
所有这些元件的控制都属于数字量控制,可以通过引线与相应的控制系统连接从而达到控制效果。
(1)初始状态容器是空的,各电磁阀门均关闭(YV1=YV2=YV3=OFF),液体传感器无液时为断开(SL1=SL2=SL3=OFF),电动M=OFF。
(2)启动操作
2023/6/11 5:14:08 46KB PLC课程设计
1
L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7V电压。
4脚VS接电源电压,VS电压范围VIH为+2.5~46V。
输出电流可达2.5A,可驱动电感性负载。
1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,构成电流传感信号。
L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。
5,7,10,12脚接输入控制电平,控制电机的正反转。
EnA,EnB接控制使能端,控制电机的停转。
表1是L298N功能逻辑图。
2023/3/7 14:26:17 95KB l298n
1
共 120 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡