PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
VisualGDB安装包及教程,适用于VS2008-2017。
由于安装过程中尝试了网上的好多方法都不行,所以就更改了一些文件和安装步骤。
2024/7/15 16:14:37 32.17MB STM32 VisualGDB VS2017
1
本资源为串口控制台的源代码,目标单片机为stm32f103,通过简单的步骤可移植到其他平台上,甚至改为lcd控制台,移植步骤见网址:http://blog.csdn.net/wwddgod/article/details/78067604
2024/7/15 8:45:44 2.58MB 串口控制台 串口命令行 串口终端
1
IBMV7000更换硬盘的步骤,非常详细,图文并茂,适合新手区操作使用,而且在更换硬盘失败的情况下也有解决办法你可以试试
3.12MB ibm v7000
1
MyEclipseCI2019.4最新破解文件,内含破解教程,亲测可用,按照教程破解成功,注意步骤,先看完教程再破解。
第七步的时候时替换65个文件
9.18MB MyEcli
1
分析了C语言在控制系统上编程的特点,结合系统资源对C语言具体要求,介绍了控制系统上的开发环境和开发步骤。
2024/7/13 18:46:08 306KB C 工业控制系统 工控
1
对于GUI和16/256/真彩色终端的基础上,一个黑暗的VIM/Neovim配色方案,由优秀灵感的色彩为。
颜色参考安装使用您选择的Vim插件管理器安装主题(或通过将colors/onedark.vim放在~/.vim/colors/目录中和autoload/onedark.vim放在~/.vim/autoload/目录中来手动安装主题。
)该主题还支持作为Vim8软件包安装。
只需将此存储库克隆到~/.vim/pack/*/opt/(这样,此自述文件的本地路径最终将是~/.vim/pack/*/opt/onedark.vim/README.md)并添加packadd!onedark.vimpackadd!onedark.vim到您的~/.vimrc。
(路径中的*可以是任何值;
有关更多信息,请参见:helppackages。
)如果在终端中使用Vim,请执行以下操作以测试您的终端仿真器是否支持,然后添加相关的~/.vimrc配置:注意:GUI(非终端)Vim始终显示24位颜色,而不管此步骤中进行的配置如何。
在您的shell中运行以下代码段:
2024/7/12 12:10:26 339KB vim dark-syntax-theme colorscheme vim-airline
1
可以破解myEclipse2017-CI-8,里面附带详细的破解步骤,亲测成功。
2024/7/12 12:55:37 2.82MB myeclipse
1
压缩包里详细介绍了如何利用XMLSpy这个软件新建一个XMLSchema文档,内容非常充实,在网上找了很久自己整理好的,只要按照文档的步骤就可以很快学会如何使用XMLSpy了,非常适合初次接触XML知识和XMLSpy这个软件的人。
最后,希望学习顺利。
2024/7/10 15:15:21 747KB XMLSpy XmLSchema 新建XML文档
1
运行Downloadmingw-get-setup.exe,点击"运行",continue等修改环境变量:选择计算机—属性---高级系统设置---环境变量,在系统变量中找到Path变量,在后面加入min-gw的安装目录,如C:\MinGw\bin在开始菜单中,点击"运行",输入cmd,打开命令行:输入mingw-get,如果弹出MinGwinstallationmanager窗口,说明安装正常。
此时,关闭MinGwinstallationmanager窗口,否则接下来的步骤会报错在cmd中输入命令mingw-getinstallgcc,等待一会,gcc就安装成功了。
如果想安装g++,gdb,只要输入命令mingw-getinstallg++和mingw-getinstallgdb
2024/7/10 14:27:42 77KB gcc安装 mingw
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡