LBP+直方图与PCA+的欧式距离的人脸识别,帮助了解人脸识别
2024/2/14 5:30:14 1.01MB 人脸识别
1
主成分分析(PrincipleComponentAnalysis,PCA)是最为常用的特征提取方法,被广泛应用到各领域,如图像处理、综合评价、语音识别、故障诊断等。
有关主成分分析法的例子,步骤,和代码,希望对大家有帮助
2024/2/12 21:23:22 213KB pca
1
为了说明什么是数据的主成分,先从数据降维说起。
数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x',y',z',那么这组数据的表示只用x'和y'两个维度表示即可!当然了,如果想恢复原来的表示方式,那就得把这两个坐标之间的变换矩阵存下来。
2024/2/9 12:16:16 3KB PCA
1
配套的相关资料,好东西。
菜菜的课程,看了就知道是好东西了。
01决策树课件数据源码02随机森林03数据预处理和特征工程04主成分分析PCA与奇异值分解SVD05逻辑回归与评分卡06聚类算法Kmeans07支持向量机上08支持向量机下09回归大家族:线性回归,岭回归,Lasso与多项式回归010朴素贝叶斯011XGBoost
2024/2/5 9:49:43 153.32MB 菜菜 机器学习 sklearn
1
matlab程序-像素级图像融合-主成分分析法,希望可以帮到您,谢谢
2024/2/3 15:27:07 51KB matlab
1
在推荐算法中,样本空间构成的数据矩阵一般为稀松矩阵,且维数一般较多,可通过求取特征值或者奇异值的方式获得样本矩阵的特征矩阵,从而降低维数。
主成分分析法在矩阵降维中有很好的应用。
本文通过特征值分解、奇异值分解、PCA等操作可以获得降维后的矩阵,通过使用不同的相似度判别法获得最好的相似度,可以使得推荐算法具有很好的效果。
2024/2/3 9:17:28 360KB 推荐系统 主成分分析
1
修改过的pca人脸识别程序+orl人脸库,点击facrec就能看见结果,路径是相对路径,
2024/2/2 20:51:17 9.53MB pca orl
1
本人在https://blog.csdn.net/u010006643/article/details/46417127博客上看到的,奈何数据库没有,本人结合网上流传的数据库yale,写下了可以运行得出结果的PCA降维,人脸识别程序,特别适合numpy和PCA学习。
我第二次上传资源,感谢平台支持。
谢谢大家支持。
代码注释很详细,注意我把人脸图片在文件夹之内看成二维的数组。
实验表明,PCA对于光照很敏感。
2024/1/29 17:14:48 1.52MB 人脸识别 python 机器学习
1
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的。
实现数据降维的步骤:1、将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵2、求样本矩阵的协方差矩阵3、求协方差矩阵的特征值和特征向量4、将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵。
并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵。
5、用映射矩阵对数据进行映射,达到数据降维的目的。
2024/1/6 15:32:43 24KB PCA
1
此程序包含经典PCA以及2DPCA算法的MATLAB程序,以及在ORL人脸数据库中的人脸识别应用,分类识别算法采用的是SVM。
PCA最高识别率为85%2DPCA为91%程序中涉及到一些图片路径的修改,请注意自己修改。
部分重要程序有xxx以及TDxxx两份,分别对应于PCA以及2DPCA程序的使用。
主要识别能力有:单张人脸的类别的识别,全体人脸的识别率的计算,单张人脸的图像近似重构。
特别注意:在test之前一定要先train一下哦:比如:TDtrain(40,5,5);TDtest
2023/12/26 11:01:19 22.34MB 2DPCA
1
共 206 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡