利用SVM神经网络进行分类预测,以某葡萄酒分类为例的matlab程序
2023/12/19 10:08:58 37KB SVM matlab
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2023/12/18 13:27:37 91.48MB 深度学习
1
基于opencv的车牌识别源码,亲测可用,包括提前提取车牌区域,字符分割以及字符识别整个车牌识别过程。
在提取车牌区域时用过SVM支持向量机来识别,最后的车牌字符识别通过神经网络识别。
将两种机器学习算法都用到了。
不仅仅用于学习,我在车牌识别项目中也是基于该源码工作的。
2023/12/16 20:19:13 43.77MB opencv 车牌识别 SVM 神经网络
1
使用MATLAB软件中的simulink模块,进行RBF神经网络PID控制仿真,实测成功!!
1
本源代码内容包括图像处理,神经网络,遗传算法等。
2023/12/15 18:22:55 406KB 文件操作
1
神经网络变量筛选—基于BP的神经网络变量筛选matlab代码程序
2023/12/15 17:40:18 4KB BP 变量筛选
1
LM-BP神经网络的源代码,有注释,容易读懂
2023/12/15 14:45:08 2KB LM BP神经网络
1
人脸识别具有重要的实际应用价值,已成为计算机智能识别领域的热门研究课题。
传统的人脸识别系统需要人的正面进行识别,而且仅对正面进行识别,因此在识别效率和准确率上存在很大缺陷。
本文提出了基于BP神经网络的人脸方向识别方法,并利用MATLAB2014平台进行了人脸方向识别试验。
统计试验结果表明,该方法预测误差很小,结果接近真实值。
利用本文所提出的方法,可以从多个方向进行人脸识别,从而提高了人脸识别的效率和正确率。
2023/12/14 21:26:43 2.15MB 人工智能
1
这是一门专门为STEM学生开发的机器学习入门课程。
我们讨论有监督、无监督和强化学习。
笔记开始阐述了没有神经网络的机器学习方法,如主成分分析,t-SNE,和线性回归。
我们继续介绍基本和高级神经网络结构,如传统神经网络、(变分)自编码器、生成对抗网络、受限玻尔兹曼机器和递归神经网络。
2023/12/14 4:52:51 4.08MB 机器学习
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡