采用MATLAB实现支持向量机(SVM)处理二分类问题,分别采用二次规划凸优化求解、半不无穷规划(线性核与非线性核)求解。
带IRIS数据、实验报告与SVM二分类原理数学推导文档,可直接运行,不使用MATLAB的SVM工具箱,比较基础。
2019/7/10 18:34:24 5.11MB SVM 支持向量机 MATLAB 二分类
1
中文维基glove词向量(已锻炼)-part2中文维基glove词向量(已锻炼)-part2
2021/1/20 17:28:13 113.06MB glove
1
SVM(支持向量机)是模式识别和机器学习中的重要的数据分类的方法.本代码可以完成三分类.
2018/6/23 6:16:26 4KB SVM 支持向量机 三分类
1
实验7:RIP协议的OPNET仿真分析实验环境:OPNET内容:(1)了解RIP路由协议的距离向量算法;
(2)熟悉仿真工具OPNET的使用;
(3)给出一个网络拓扑,用OPNET仿真实现距离向量算法,运转后输出其各个节点的路由表
2020/3/14 19:25:45 423KB RIP OPNET
1
19年6月最新翻译文档ClickHouse,开源的数据分析性的数据库。
Clickhouse的具体特点(不支持事务,不同于关系型数据库):Ø1.真正的面向列的DBMSØ2.数据高效压缩Ø3.磁盘存储的数据Ø4.多核并行处理Ø5.在多个服务器上分布式处理Ø6.SQL语法支持Ø7.向量化引擎Ø8.实时数据更新Ø9.索引Ø10.适合在线查询Ø11.支持近似预估计算Ø12.支持嵌套的数据结构Ø支持数组作为数据类型Ø13.支持限制查询复杂性以及配额Ø14.复制数据复制和对数据完整性的支持ClickHouse的不完满:Ø1.不支持事物。
Ø2.不支持Update/Delete操作。
Ø3.支持有限操作系统。
2018/11/11 6:10:23 4.78MB ClickHouse 19年6月最新 最新官方翻译
1
电力零碎负荷预测,利用的是遗传算法,里面使用的工具是SVM支持向量机。
2021/5/15 16:16:31 18KB 负荷预测
1
本书适合有志于从事数据挖掘的初学者,需求的朋友可看看第一部分数据挖掘与机器学习数学基础3第一章机器学习的统计基础3第二章探索性数据分析(EDA).11第二部分机器学习概述14第三章机器学习概述14第三部分监督学习---分类与回归16第四章KNN(k最邻近分类算法)16第五章决策树19第六章朴素贝叶斯分类29第七章Logistic回归.32第八章SVM支持向量机42第九章集成学习(EsembleLearning)43第十一章模型评估46第四部分非监督学习---聚类与关联分析50第十二章Kmeans聚类分析.50第十三章关联分析Apriori.52第十四章数据预处理之数据降维54第五部分Python数据预处理.57第十五章Python数据分析基础.57第十六章Python进行数据清洗.77第六部分数据结构与算法82第七部分SQL知识.86第八部分数据挖掘案例分析87案例一AJourneythroughTitanic597c770e.87案例二Analysisforairplane-crashes-since-190894案例三贷款预测问题98案例四KNN算法实现葡萄酒价格模型预测及交叉验证107
2015/1/23 5:02:50 4.4MB python 数据挖掘 算法
1
支持向量数据描述(SupportVectorDataDescription,SVDD)语言:MATLAB版本:V2.1-----------------------------------------------------创作不易,欢迎各位5星好评~~~如有疑问或建议,请发邮件至:iqiukp@outlook.com可提供关于该算法/代码的付费咨询和有偿编写-----------------------------------------------------主要特点1.支持单值分类和二值分类的超球体构建2.支持多种核函数(linear,gaussian,polynomial,sigmoid,laplacian)3.支持2D或3D数据的决策边界可视化4.支持基于贝叶斯超参数优化、遗传算法和粒子群算法的SVDD的参数优化5.支持加权的SVDD-----------------------------------------------------注意1.SVDDV2.1仅支持R2016b以上的MATLAB版本2.正样本和负样本对应的标签分别为1和-13.提供了多个示例文件,每个文件的开头都有对应的引见4.此代码仅供参考5.可以阅读“SVDD-V2.1使用说明.pdf”文件了解更多用法
1
这本书是谱方法的经典之作,Springer出版社出版。
谱方法是机器学习中重要的一种方法,利用特征值特征向量,奇异值分解等方法。
本书讲述的是其应用,算法和分析。
道客巴巴上下载需要16,另一个书籍下载网上需要50,csdn上有另一个人传输的这本书只要136页,而本书应该是486页,这是全文版本。
数学书籍决定你未来能走多远。
2020/8/10 23:03:26 3.94MB spectral met
1
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。
以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。
最初采用支持向量机分类器进行分类。
实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。
2019/5/1 5:13:11 253KB 分类算法
1
共 607 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡