纹理图像分割算法,即把一张纹理图像分割成许多样本,然后利用imagequilting算法,重重生成另一张纹理图像,这样可以求出样本的平均值进行排序,直接运行程序imagequilt.m即可看到效果
2017/3/25 13:35:58 8.66MB Image Quilting
1
基于BP算法神经网络的负荷预测,对某实测7日内数据为样本,举行方针预测。
2020/2/11 16:19:39 2KB BP算法 负荷预测
1
负样本对照随意,可以随意用自然场景来生成http://blog.csdn.net/zhuangxiaobin/article/details/25476833
2017/3/6 5:17:58 47.27MB 车辆检测 负样本
1
,利用TOPSIS法计算网络训练理想输出样本值。
首先建立起包括3个投入和4个产出的企业技术创新测度评价目标体系,然后根据综合评价要求和网络训练学习的可行性、有效性,设计出3.1O.1拓扑结构的BP神经网络模型,其中,网络输入为3个技术创新投入测度,网络输出为1个技术创新测度评价值,而用于神经网络训练学习的理想输出是根据4个技术创新产出测度,运用TOPSIS法计算得出的综合评价值。
实证部分,以9家上市企业近四年技术创新投入产出目标值样本为例,运用本文所提出的方法,借助MATLAB神经网络工具箱,通过大量的学习样本的测试和训练,使模型的误差值达到预定的范围内,从而建立起可用于企业技术创新测度综合评价的神经网络模型。
2017/8/12 4:40:07 976B topsis matlab 源码
1
面向高维小样本数据的分类特征选择算法研讨.pdf
2016/4/4 15:54:46 5.91MB 文档资料
1
本文实例讲述了Python实现的随机森林算法。
分享给大家供大家参考,具体如下:随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。
算法的一些基本要点:*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,构成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)著名的python机器学习包scikitlearn的文档对此算法有比较详尽的介绍:http://scikit-learn.org/stable/modules/en
2016/7/18 17:32:02 84KB dataframe prediction python
1
同步相量IEEEC37.118.1-2011中同步相量参考算法的MATLAB实现。
如何?在MATLAB中运行>>synchrophasor要计算一个相位的同步相量,请使用以下方法之一>>X1(i)>>X2(i)>>X3(i)分别针对阶段1、2或3。
请注意,您不能早于Fs/f样本(在当前代码中,此值为80)并且晚于Fs-(Fs/f)来计算相量。
原因是在计算过程中,需要当前位置i之前一个周期和之后一个周期的样本值。
正序列的相量可以通过以下公式计算>>Xp(i)不幸的是,一次计算多个相量也不起作用(例如X1(100:200))。
例如,如果要绘制它们,则必须执行以下处理方法:>>fori=start_index:end_index>>foo(i)=X1(i);>>end相量角的
2015/1/22 13:03:28 3KB MATLAB
1
matlab代码粒子群算法自适应CLPSOMatlab代码用于宏观自适应综合学习粒子群优化器(MaPSO)和微观自适应综合学习粒子群优化器(MiPSO)算法。
抽象的优化启发式算法(如粒子群优化器(PSO))的广泛使用对参数自适应提出了巨大挑战。
PSO的一种变体是综合学习粒子群优化器(CLPSO),它使用所有个人的最佳信息来更新其速度。
CLPSO的新颖策略使种群能够从特定世代的样本中进行读取,这称为刷新间隙m。
在本文中,我们开发了两类学习自动机(LA),以研究自动机对CLPSO刷新间隙调整的学习能力。
在第一类中,将学习自动机分配给总体,在第二类中,每个粒子都有自己的个人自动机。
我们还将所提出的算法与CLPSO和CPSO-H算法进行了比较。
仿真结果表明,我们的算法在功能,鲁棒性和收敛速度方面均优于同类算法。
参考[1]MohammadHasanzadeh,MohammadRezaMeybodi和MohammadMehdiEbadzadeh,“,”在人工智能和信号处理中,Springer国际出版,2014年,第267-276页。
2019/3/16 4:37:57 9KB 系统开源
1
DBSCAN聚类,是一种基于密度的聚类算法,它类似于均值漂移,DBSCAN与其他聚类算法相比有很多优点,首先,它根本不需要固定数量的簇。
它也会异常值识别为噪声,而不像均值漂移,即使数据点非常不同,也会简单地将它们分入簇中。
另外,它更抗噪音,能够很好地找到任意大小和任意形状的簇。
DBSCAN的聚类过程就是根据核心弱覆盖点来推导出最大密度相连的样本集合,首先随机寻找一个核心弱覆盖样本点,按照Minpts和Eps来推导其密度相连的点,然后再选择一个没有赋予类别的核心弱覆盖样本点,开始推导其密度相连的样本结合,不断迭代到所有的核心样本点都有对应的类别为止。
作者博客中详细介绍了DBSCAN的算法原理,可以通过文章结合学习,代码包含详细注释,只需要导入自己的聚类数据,运行代码便可以得出聚类结论与图像。
2019/2/13 8:01:39 4KB DBSCAN 数学建模 python 算法
1
文件包含一个数据集(csv文件)和一个可执行代码(py文件),是对红酒数据集的分类训练与测试。
可作为人工智能、机器学习初学者的学习资料。
模型训练基于逻辑回归算法,数据集和测试集按照8:2的比例进行划分。
数据集前11列为红酒的属性,最初一列是红酒的分类标签,此处红酒总共有六类(标签分别为3、4、5、6、7、8),每一行为一个红酒样本。
通过对机器学习分类模型输入特征值,得出此红酒的种类。
需要Python版本3.8及以上;
需要引入第三方库pandas和sklearn。
1
共 560 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡