基于SVM+HOG的人脸检测matlab程序。
内含libsvm-3.22SVM库。
资源中tgrs2013_epfifr.rar可不需要解压,可以无视。
该程序自动读取人脸库文件夹下不同人物的照片,可实现遍历文件夹及子文件夹下包含的图片,进而提取特征利用SVM训练分类识别。
这可以作为一个baseline,基础框架,在这个基础上可以提取更多特征进而提高识别精度。
由于人脸库是我们自己构造的,涉及了个人隐私,不能共享,所以本程序中人脸库文件下图像需要自己提供哦,然后自己构造相应的训练样本便可以运行了。
1
在遥感图像的众多分割方法中,高斯混合模型(GMM)是一种常用的图像建模方法。
提出了高斯-瑞利混合模型(GRMM)可能更适合对遥感图像建模。
介绍了传统高斯混合模型和高斯-瑞利混合模型的区别。
比较了这两种混合模型对图像建模的结果,并用数据说明高斯-瑞利混合模型拟合图像的像素分布误差更小。
采用最大熵方法确定图像的最佳分类数,采用马尔可夫随机场(MRF)方法及新的势能函数完成图像的分割,采用迭代条件模型(ICM)完成分割过程中的最大后验概率计算问题。
在实验中采用了3幅遥感图像,实验过程中比较了各个图像运用高斯混合模型和高斯-瑞利混合模型的分割和拟合结果,分别通过数据和分割结果体现了该分割方法的效果。
2024/9/16 15:29:46 5.33MB 图像处理 遥感图像 高斯-瑞利 最大熵
1
内含libsvm工具箱、SVMs的示例程序(含代码和实例数据)、SVR的示例程序(含代码和实例数据)
2024/9/16 15:02:24 521KB 多分类 SVM 含例程
1
OpenCVHaar特征分类器识别H字符用xml文件,带H字符图片供打印,参考网上opencv人脸识别代码换一下xml文件名即可使用。
可用作无人机着陆用。
在无较大的旋转情况下基本能识别。
2024/9/16 11:11:16 10KB OpenCV Haar特征 识别 H
1
商品管理,商品分类和查询,到购物车实现,用户订单处理,再到管理员系统。
2024/9/16 0:19:51 3.54MB 化妆品
1
基于图像块分类处理的快速单图超分辨率重建
2024/9/15 22:50:07 910KB 研究论文
1
基于K-means算法的遥感图像分类的matlab实现,基本没什么用
2024/9/15 18:34:50 8.61MB k-means
1
行人检测分类器的训练,训练完可测试效果如何,注意样本的路径问题行人检测分类器的训练,训练完可测试效果如何,注意样本的路径问题
2024/9/15 3:37:16 37.85MB hog svm 行人检测 分类器训练
1
深入研究灰度共生矩阵算法,结合和差统计法对其进行改进。
编码实现改进的图像纹理提取算法,并采用基于径向基内积函数内核的支持向量机方法对图像分类效果进行实验。
通过训练和测试证明,该系统能减少特征提取的计算时间和存储空间,并可达到良好的图像分类效果
2024/9/15 2:45:17 315KB 纹理特征
1
目前最全的中文情感词典,包括以下内容:褒贬词及其近义词,汉语情感词极值表,清华大学李军中文褒贬义词典,情感词典及其分类,情感词汇本体,台湾大学NTUSD简体中文情感词典,知网Hownet情感词典。
2024/9/15 1:47:13 1.54MB 情感词库 语义词库 情感分析 中文
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡