首页 开发技术 其它     /    Softmax回归模型(matlab代码)

Softmax回归模型(matlab代码)

上传者: u014598501 | 上传时间:2024/11/30 11:13:18 | 文件大小:11.14MB | 文件类型:zip
Softmax回归模型(matlab代码)
softmax回归模型是一种常用的分类器,也是与深度结构模型相结合最多的分类方法。
本代码包中的程序对图像构建softmax分类器,并按照图像所属类别进行分类。
程序是在matlab平台上实现的,简单易懂。
本软件ID:9477060

文件下载

资源详情

[{"title":"(57个子文件11.14MB)Softmax回归模型(matlab代码)","children":[{"title":"softmax_exercise","children":[{"title":"t10k-images.idx3-ubyte <span style='color:#111;'>7.48MB</span>","children":null,"spread":false},{"title":"computeNumericalGradient.m <span style='color:#111;'>1.47KB</span>","children":null,"spread":false},{"title":"loadMNISTImages.m <span style='color:#111;'>811B</span>","children":null,"spread":false},{"title":"train-images.idx3-ubyte <span style='color:#111;'>44.86MB</span>","children":null,"spread":false},{"title":"loadMNISTLabels.m <span style='color:#111;'>516B</span>","children":null,"spread":false},{"title":"t10k-labels.idx1-ubyte <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"softmaxTrain.m <span style='color:#111;'>1.86KB</span>","children":null,"spread":false},{"title":"train-labels.idx1-ubyte <span style='color:#111;'>58.60KB</span>","children":null,"spread":false},{"title":"softmaxCost.m <span style='color:#111;'>1.75KB</span>","children":null,"spread":false},{"title":"minFunc","children":[{"title":"lbfgsC.mexmac <span style='color:#111;'>9.28KB</span>","children":null,"spread":false},{"title":"lbfgsUpdate.m <span style='color:#111;'>614B</span>","children":null,"spread":false},{"title":"autoHess.m <span style='color:#111;'>901B</span>","children":null,"spread":false},{"title":"minFunc_processInputOptions.m <span style='color:#111;'>3.62KB</span>","children":null,"spread":false},{"title":"mcholC.mexw64 <span style='color:#111;'>12.00KB</span>","children":null,"spread":false},{"title":"ArmijoBacktrack.m <span style='color:#111;'>3.17KB</span>","children":null,"spread":false},{"title":"conjGrad.m <span style='color:#111;'>1.80KB</span>","children":null,"spread":false},{"title":"example_minFunc_LR.m <span style='color:#111;'>1.57KB</span>","children":null,"spread":false},{"title":"precondDiag.m <span style='color:#111;'>42B</span>","children":null,"spread":false},{"title":"lbfgsC.mexw32 <span style='color:#111;'>7.00KB</span>","children":null,"spread":false},{"title":"autoHv.m <span style='color:#111;'>317B</span>","children":null,"spread":false},{"title":"autoGrad.m <span style='color:#111;'>807B</span>","children":null,"spread":false},{"title":"lbfgsC.mexmaci <span style='color:#111;'>12.36KB</span>","children":null,"spread":false},{"title":"lbfgsC.c <span style='color:#111;'>2.35KB</span>","children":null,"spread":false},{"title":"mcholC.mexw32 <span style='color:#111;'>8.00KB</span>","children":null,"spread":false},{"title":"precondTriuDiag.m <span style='color:#111;'>60B</span>","children":null,"spread":false},{"title":"autoTensor.m <span style='color:#111;'>870B</span>","children":null,"spread":false},{"title":"lbfgsC.mexa64 <span style='color:#111;'>7.53KB</span>","children":null,"spread":false},{"title":"precondTriu.m <span style='color:#111;'>51B</span>","children":null,"spread":false},{"title":"lbfgsC.mexw64 <span style='color:#111;'>9.50KB</span>","children":null,"spread":false},{"title":"callOutput.m <span style='color:#111;'>385B</span>","children":null,"spread":false},{"title":"WolfeLineSearch.m <span style='color:#111;'>11.21KB</span>","children":null,"spread":false},{"title":"rosenbrock.m <span style='color:#111;'>1.05KB</span>","children":null,"spread":false},{"title":"lbfgs.m <span style='color:#111;'>924B</span>","children":null,"spread":false},{"title":"dampedUpdate.m <span style='color:#111;'>995B</span>","children":null,"spread":false},{"title":"mcholC.mexmaci64 <span style='color:#111;'>12.88KB</span>","children":null,"spread":false},{"title":"minFunc.m <span style='color:#111;'>42.61KB</span>","children":null,"spread":false},{"title":"logistic","children":[{"title":"mylogsumexp.m <span style='color:#111;'>227B</span>","children":null,"spread":false},{"title":"mexutil.c <span style='color:#111;'>1.13KB</span>","children":null,"spread":false},{"title":"LogisticLoss.m <span style='color:#111;'>659B</span>","children":null,"spread":false},{"title":"repmatC.dll <span style='color:#111;'>7.50KB</span>","children":null,"spread":false},{"title":"LogisticHv.m <span style='color:#111;'>216B</span>","children":null,"spread":false},{"title":"repmatC.mexmac <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"LogisticDiagPrecond.m <span style='color:#111;'>417B</span>","children":null,"spread":false},{"title":"repmatC.c <span style='color:#111;'>3.87KB</span>","children":null,"spread":false},{"title":"mexutil.h <span style='color:#111;'>317B</span>","children":null,"spread":false},{"title":"repmatC.mexglx <span style='color:#111;'>20.20KB</span>","children":null,"spread":false}],"spread":false},{"title":"lbfgsC.mexmaci64 <span style='color:#111;'>8.59KB</span>","children":null,"spread":false},{"title":"mcholinc.m <span style='color:#111;'>564B</span>","children":null,"spread":false},{"title":"lbfgsC.mexglx <span style='color:#111;'>7.55KB</span>","children":null,"spread":false},{"title":"isLegal.m <span style='color:#111;'>107B</span>","children":null,"spread":false},{"title":"taylorModel.m <span style='color:#111;'>677B</span>","children":null,"spread":false},{"title":"example_minFunc.m <span style='color:#111;'>2.36KB</span>","children":null,"spread":false},{"title":"polyinterp.m <span style='color:#111;'>4.12KB</span>","children":null,"spread":false},{"title":"mchol.m <span style='color:#111;'>1.26KB</span>","children":null,"spread":false},{"title":"mcholC.c <span style='color:#111;'>4.09KB</span>","children":null,"spread":false}],"spread":false},{"title":"Mysoftmax_classifier.m <span style='color:#111;'>1.58KB</span>","children":null,"spread":false},{"title":"softmaxPredict.m <span style='color:#111;'>936B</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • u011905515:
    还不是很会用,不过感谢了。2018-03-26
  • 连天决:
    还不是很会用,不过感谢了。2018-03-26
  • anooyman:
    还没有,没有看2017-10-24
  • Anooyman:
    还没有,没有看2017-10-24
  • hxy19890708:
    还不是很会用,不过感谢了。2016-05-04
  • 我来学习的哈:
    还不是很会用,不过感谢了。2016-05-04

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明