全国土壤数据集,来源于联合国粮农组织(FAO)和维也纳国际使用系统研究所(IIASA)所构建的世界和谐土壤数据库(HarmonizedWorldSoilDatabase)(HWSD),该数据库于2009年3月26日发布了1.1版本.该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。
2019/10/3 12:45:31 7.78MB 土壤数据库
1
python中运用到的cv,下载后进行pipinstall安装即可
2018/3/13 22:55:28 43.39MB python opencv
1
python中运用到的cv,下载后进行pipinstall安装即可
2018/3/13 22:55:28 43.39MB python opencv
1
本书可作为工科类研究生矩阵论教材,全书共分6章(约50学时),主要讲解矩阵的基本理论与方法,包括线性空间与线性变换,常见的矩阵分解,广义逆矩阵,矩阵分析,矩阵的直积与非负矩阵的引见等,各章配有相应的习题用作练习。
  本书也可作为理工科学生及教师的教学参考书。
第2版前言第1章线性代数引论1.1线性空间1.2线性变换及矩阵1.3Jordan标准形1.4欧氏空间和酉空间第2章矩阵的分解2.1QR分解2.2正规矩阵及Schur分解2.3满秩分解2.4奇异值分解2.5单纯矩阵的谱分解第3章矩阵的广义逆3.1广义逆矩阵3.2广义逆矩阵A+3.3A+的几种基本求法3.4广义逆与线性方程组第4章矩阵分析4.1向量与矩阵的范数4.2特征值估计4.3矩阵级数4.4矩阵函数及其计算4.5矩阵函数的应用第5章矩阵的直积5.1直积的定义与性质5.2直积与特征值5.3矩阵的拉直5.4直积与矩阵方程第6章非负矩阵引见6.1非负矩阵的基本性质6.2正矩阵与Perron定理6.3不可约非负矩阵6.4素矩阵与M矩阵6.5随机矩阵6.6两个非负矩阵模型参考文献
2020/7/12 14:09:24 2.25MB 矩阵理论
1
本人做的FFPLAY移植到VC下的开源工程:ffplayforMFC。
本工程将ffmpeg项目中的ffplay播放器(ffplay.c)移植到了VC的环境下。
并且使用MFC做了一套简单的界面。
它可以完成一个播放器播放视频的基本流程:解协议,解封装,视频/音频解码,视音频同步,视音频输出。
此外还包含一些控制功能:播放,暂停/继续,前进,后退,停止,逐帧播放,全屏等功能。
通过本程序可以学习视频播放器原理,以及SDL和Windows消息机制等。
代码中包含了比较详细的注释。
1.1版(2014.7.10)*更换了部分界面*原工程支持Unicode编码*修复了Release下的Bug*添加了两个宏定义"INT64_MININT64_MAX",在没有安装Win7SDK的情况下,可能会出现找不到定义的情况。
2020/3/3 16:41:19 12.3MB ffplay mfc
1
本人做的FFPLAY移植到VC下的开源工程:ffplayforMFC。
本工程将ffmpeg项目中的ffplay播放器(ffplay.c)移植到了VC的环境下。
并且使用MFC做了一套简单的界面。
它可以完成一个播放器播放视频的基本流程:解协议,解封装,视频/音频解码,视音频同步,视音频输出。
此外还包含一些控制功能:播放,暂停/继续,前进,后退,停止,逐帧播放,全屏等功能。
通过本程序可以学习视频播放器原理,以及SDL和Windows消息机制等。
代码中包含了比较详细的注释。
1.1版(2014.7.10)*更换了部分界面*原工程支持Unicode编码*修复了Release下的Bug*添加了两个宏定义"INT64_MININT64_MAX",在没有安装Win7SDK的情况下,可能会出现找不到定义的情况。
2016/2/18 17:19:27 12.3MB ffplay mfc
1
VolvoS90XC90S60XC60播放列表生成软件,本人开发的亲验可用,目录数目限制999,V1.1修正了部分中文歌曲名不兼容的问题
2018/7/5 10:24:42 5.07MB Volvo S90S60XC90XC60 车机应用软件
1
VolvoS90XC90S60XC60播放列表生成软件,本人开发的亲验可用,目录数目限制999,V1.1修正了部分中文歌曲名不兼容的问题
2018/7/5 10:24:42 5.07MB Volvo S90S60XC90XC60 车机应用软件
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
共 704 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡