用C语言实现了高斯白噪声数据的产生Routinemrandom:Togeneratetherandomnumber(pseudo-whitenoise).inputParameters:n:therandomdatanumberrequested;integer.iseed:theseedforpseudo-randomdatageneration.itmustbeinitializedbymainprogram(suggestedvalueisISEED=12357),andtherandomnumberiscycled,thecyclelength=1,048,576itype:randomdatadistributiontype,seebelow:itype=1:Uniformdistributed,from0.0to1.0itype=2:Uniformdistributed,Mean=0.0,Variance(方差)(Power)p=1.0itype=3:Uniformdistributed,Mean=0.0,Variance(Power)p=p.itype=4:Gaussiandistributed,Mean=0.0,Variance(Power)p=1.0itype=5:Gaussiandistributed,Mean=0.0,Variance(Power)p=p.p:variance(Power)ofrandom,onlyusedwhenitype=3oritype=5.outparameters:u:ndimensionedrealarray,dataisstoredinu(0)tou(n-1).inChapter1
2024/5/19 6:17:19 8KB 高斯白噪声 C语言
1
自适应光学系统的光路通常包含很多光学器件,而各光学器件存在加工误差、装调误差和非均匀热变形等,这些因素会对光束质量产生影响,因此系统内光路相位畸变的校正对获得好的光束质量至关重要。
然而系统光路较长时,激光在传输过程中的衍射效应会对内光路相位畸变的校正效果产生重要影响。
模拟了离焦和像散等实际应用中存在的主要畸变在不同衍射(以菲涅耳数表征)和像差大小下的校正效果。
研究表明:校正效果随着衍射的增强而变差,校正效果良好的菲涅耳数范围为Nf>11;
随着像差的增大相位校正效果变差。
1
雷达信号分选中常见的直方图法的SDIF算法。
包含了信号产生、信号分选。
2024/5/18 17:31:29 16KB SDIF 信号分选 MATLAB
1
加载在微软公司(Microsoft®)的电子表格软件(Excel®)上的水晶球软件2000专业版(CrystalBall®2000ProfessionalEdition)是一个易于使用的软件。
它可以帮助你分析与你的电子表格模型相关的风险和不确定性。
这个软件包括蒙特卡洛模拟(水晶球)、时间序列预测(水晶球预言家)、最优选择(优化查询)和用来构造定制界面和程序的开发工具箱。
由于电子表格缺乏设计和分析可选方案的能力,所以仅用电子表格来估算一个事件发生的概率是不合适的。
而加载了水晶球软件的电子表格模型就能具备这样的功能,从而帮助用户洞察模型运行和结果产生的机制。
本初级教程通过一个媒体产业的实例来演示蒙特卡洛模拟和时间序列预测工具如何用于一个电子表格模型,为商业决策的内在风险提供更深入的了解和度量。
2024/5/18 2:29:21 6.11MB 水晶球
1
根据STM32产生SPWM脉冲来实现输出50HZ的正弦交流信号
2024/5/18 2:39:57 3.51MB STM32 SPWM 逆变
1
本系统设计一个由8088CPU为核心的多功能波形发生器。
具体要求如下。
①.该发生器能在操作人员控制下输出正弦波、方波、三角波或锯齿波波形。
②.这些波形的极性、周期和占空比(对矩形波而言)等可由操作人员设置和修改(信号频率可调节)。
通过示波器显示、检验产生的波形。
设计相应的D/A、键盘、显示接口电路,说明工作原理,编写程序及程序流程图。
可在线键盘参数设置,其中控制输出部分采用D/A0832模拟量输出。
设计要求:设计出电路原理图,说明工作原理,编写程序及程序流程图。
资源中,报告,proteus仿真和代码都有
1
基于web的动物识别系统1.实验目的理解和掌握产生式知识表示方法及产生式系统的基本过程,能够利用Web编程技术建立一个基于产生式知识表示的简单的智能系统。
2.实验环境(1)硬件环境:网络环境中的微型计算机。
(2)软件环境:Windows操作系统,任选一种网络编程语言和数据库管理系统。
3.实验要求(1)以本书第2章动物识别产生式系统的规则为知识库(可增加规则),采用正向推理或逆向推理方式。
(2)以选定的数据库管理系统建立知识库,用选定的网络编程语言按B/S模式开发一个具有解释功能的智能系统。
(3)提交完整的软件系统和相关文档,包括源程序和可执行程序。
2024/5/17 4:31:03 9.23MB 人工智能 C#.net 动物识别
1
Olery成立于2010年,总部位于阿姆斯特丹。
该初创公司为酒店行业提供声誉管理与媒体监控工具,帮助酒店将网络评论和社交媒体反馈转化成可执行的商业智能分析。
Olery成立最初是使用MySQL来存储(用户、合同等等)核心数据,用MongoDB来存储评论及其类似的数据(即哪些在数据丢失的情况下很容易恢复的数据)。
一开始,这样的安装运行的非常好,然而,随着公司的成长,开始遇到了各种各样的问题,尤其是MongoDB的问题居多。
其中一些问题是由于应用与数据库的交互方式而引起的,一些则是由数据库本身而产生的。
例如,某个时刻,Olery需要从MongoDB中删除一百万个文档,以后再把这些数据重新插入到Mon
2024/5/17 0:48:05 315KB 软件公司为何要放弃MongoDB?
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
脑电信号(Electroencephalograph,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,其包含了大量的生理与病理信息,并可以用许多特征量来描述其特征信号。
P300电位即受试者辨认“新异”(oddball)刺激序列中低概率的“靶刺激”时,在头皮记录到的潜伏期约为300ms的最大晚期正性波,是事件相关电位(Event-RelatedPotential,ERP)中应用最广、与认知功能关系最为密切的成分。
脑机接口(BCI)是一种不依赖于外周神经和肌肉等常规输出通道的信息交流系统。
P300是神经系统接受特定模式下的视觉刺激所产生的特定电活动,适合于脑机接口应用。
本文针对P300脑电信号的特点,即诱发电位中的P300成分通常是在新异刺激模型中对不同刺激进行辨别、分类、判断时产生的,所以采用视觉“Oddball”范式诱发事件相关电位,然后采用EGI64导脑电系统采集原始脑电信号,再用Net-Station软件对原始数据进行预处理,预处理步骤包括滤波(Filter)、数据分段(Segmentation)、人工伪迹检测(ArtifactDetection)、坏通道替换(BadChannelReplacement)、叠加平均(Averaging)、参考点转换(AverageReferencing)、基线校正(BaselineCorrection)等,最后采用功率谱分析与相关系数矩阵相结合的方法选取恰当的电极,确定少量活跃电极分布在头顶位置,活跃电极主要集中在后脑区域,为脑机接口应用产品的开发奠定理论基础。
2024/5/17 0:11:15 4.6MB 脑电信号
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡