MATLAB的应用,其中包含了关于人口预测及调查的内容,与MATLAB进行仿真预测。
2024/3/10 4:44:09 4.13MB MATLAB
1
MATLAB源码集锦-小波神经网络的时间序列预测代码
2024/3/8 15:37:39 5KB 小波神经网络 时间序列 MATLAB
1
单输入单输出广义预测控制的matlab程序。
与常规的程序相比,采用了fminunc函数来求解gpc的性能指标,跳过了解析解的求解。
提高了代码的可读性
2024/3/8 11:39:32 1KB matlab gpc siso
1
关于微电网运行的优化程序,一个简单的程序做个一天的优化,对各个设备的建模和负荷的预测也是一个寻优的问题但是有可能会陷入局部最优的问题
2024/3/8 7:49:50 18KB 粒子群 微电网 优化运行
1
基于深度学习的软件源码漏洞预测综述,马倩华,李晖,深度学习方法能自动提取软件源代码的一些语法语义特征进行漏洞预测,已有一些研究证实了其有效性,但该领域还没有统一的指导原则,本
2024/3/8 4:40:51 325KB 首发论文
1
自己编写的随机梯度下降算法,附上房价预测数据集,感兴趣的可以看看
2024/3/5 13:11:14 17KB 随机梯度下降 matlab
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2024/3/5 13:45:39 391KB 时间序列预测 LSTM 深度学习 python
1
针对神经网络算法在当前PM2.5浓度预测领域存在的易过拟合、网络结构复杂、学习效率低等问题,引入RFR(randomforestregression,随机森林回归)算法,分析气象条件、大气污染物浓度和季节所包含的22项特征因素,通过调整参数的最优组合,设计出一种新的PM2.5浓度预测模型——RFRP模型。
同时,收集了西安市2013--2016年的历史气象数据,进行模型的有效性实验分析。
实验结果表明,RFRP模型不仅能有效预测PM2.5浓度,还能在不影响预测精度的同时,较好地提升模型的运行效率,其平均运行时间为O.281S,约为BP-NN(backpropagationneuralnetwork,BP神经网络)预测模型的5.88%。
2024/3/5 9:44:07 1.18MB 回归分析
1
使用tensorflow,OpenCVKeras,matplotlib完成的一个小demo基本操作如下1执行liveplot.py2执行trackgesture.py后,在终端命令行输入1进行手势预测,调用摄像头后,请按键盘b和g键此时就可以进行预测了。
权重文件:链接:https://pan.baidu.com/s/1i6OE5A9密码:by24
2024/3/4 17:14:13 18.74MB python OpenCV
1
基于SVM的回归预测分析,MATLAB直接可以运行
2024/3/3 19:46:24 218KB SVM 回归预测
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡