自相关法求功夫提前tau,把数据换资源人的可用。
方式缺陷:不能够使用到高维
2023/4/11 5:51:27 956B 自相关法
1
提出了一种用于全局优化的基于动态聚类的差分进化算法(CDE),以提高差分进化(DE)算法的功能。
随着人口的发展,CDE算法逐渐从早期探索有希望的领域转变为在后期探索具有高精度的解决方案。
对28个基准问题(包括13个高维函数)进行的实验表明,该新方法能够有效地找到接近最优的解。
与其他现有算法相比,CDE以更少的计算量提高了解决方案的准确性。
2023/2/10 20:30:12 268KB global optimization; continuous optimization;
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档简介文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。
而文本分类是文本挖掘中一个非常重要的手段与技术。
现有的分类技术都已经非常成熟,SVM、KNN、DecisionTree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。
但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。
这些问题都将导致curveofdimension、过拟合等问题。
这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。
该系统提供了Python和Java两种版本。
主要特征该系统在封装libsvm、liblinear的基础上,又增加了特征选择、LSA特征抽取、SVM模型参数选择、libsvm格式转化模块以及一些实用的工具。
其主要特征如下:封装并完全兼容*libsvm、liblinear。
基于Chi*的featureselection见feature_selection基于LatentSemanticAnalysis的featureextraction见feature_extraction支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重见feature_weight文本特征向量的归一化见Normalization利用交叉验证对SVM模型参数自动选择。
见SVM_model_selection支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标见evaluation_measure支持多个SVM模型同时进行模型预测采用python的csc_matrix支持存储大稀疏矩阵。
引入第三方分词工具自动进行分词将文本直接转化为libsvm、liblinear所支持的格式。
使用该系统可以做什么对文本自动做SVM模型的训练。
包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。
利用生成的模型对未知文本做预测。
并返回预测的标签以及该类的隶属度分数。
可自动识别libsvm和liblinear的模型。
自动分析预测结果,评判模型效果。
计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。
分词。
对文本利用mmseg算法对文本进行分词。
特征选择。
对文本进行特征选择,选择最具代表性的词。
SVM参数的选择。
利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。
对libsvm会选择c,g(gamma),对与liblinear会选择c。
对文本直接生成libsvm、liblinear的输入格式。
libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:labelindex:valueSVM模型训练。
利用libsvm、liblinear对模型进行训练。
利用LSA对进行FeatureExtraction*,从而提高分类效果。
开始使用QuickStart里面提供了方便的使用指导如何使用该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。
在程序中使用。
#将TMSVM系统的路径加入到Python搜索路径中importsyssys.path.insert(0,yourPath+"\tmsvm\src")importtms#对data文件夹下的binary_seged.train文件进行训练。
tms.tms_train(“../data/binary_seged.train”)#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”)#对预测的结果进行分析,评判模型的效果tms.tms_analysis(“../tms.result”)在命令行中调用#对data文件夹下的binary_seged.train文件进行训练。
$pythonauto_train.py[options]../data/binary_seged.train#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测pythonpredict.py../data/binary_seged.train../model/tms.config#对预测的结果进行分析,评判模型的效果$pythonresult_anlaysis.py../tms.result上面的调用方式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口输入格式labelvalue1[value2]其中label是定义的类标签,如果是binaryclassification,建议positive样本为1,negative样本为-1。
如果为multi-classification。
label可以是任意的整数。
其中value为文本内容。
label和value以及value1和value2之间需要用特殊字符进行分割,如”\t”模型输出模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key、tms.model和tms.config。
其中dic.key为特征选择后的词典;
tms.model为训练好的SVM分类模型;tms.config为模型的配置文件,里面记录了模型训练时使用的参数。
临时文件会放在“temp”文件夹中。
里面有两个文件:tms.param和tms.train。
其中tms.param为SVM模型参数选择时所实验的参数。
tms.train是供libsvm和liblinear训练器所使用的输入格式。
源程序说明src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。
tms.py为在程序中调用的主文件,直接通过importtms即可调用系统的所有函数。
其他文件为程序中实现各个功能的文件。
lsa_src:LSA模型的源程序。
dependence:系统所依赖的一些包。
包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。
tools:提供的一些有用的工具,包括result_analysis.py等。
java:java版本的模型预测程序,项目重要更新日志2012/09/21针对linux下的bug进行修正。
重新生成win和linux版本的。
2012/03/08增加stem模块,并修正了几个Bug。
2011/11/22tmsvm正式发布。
联系方式邮箱:zhzhl202@163.comThanks本系统引用了libsvm、liblinear的包,非常感谢Chih-JenLin写出这么优秀的软件。
本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。
特别感谢丽红一直以来的默默支持。
2023/2/8 18:37:14 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
deepfmCTR预估处理高维稀疏矩阵训练深度网络带来的问题
2017/7/23 9:43:20 10KB 机器学习
1
运用改进的SFLA进行疾病诊断的高维生物医学数据特征选择
2020/11/16 19:47:07 128KB 研究论文
1
在现实生活中,往往存在着大量多维数据,例如视频流数据,文本数据,RGB图像等。
传统的方法往往通过某种方式将多维数据重新排列成矩阵方式,利用矩阵分析方法,例?蛔PCA,SVD,NMF,进行特征提取、聚类、分类等操作,这无疑破坏了数据原本的空间结构,增加了分析结果的不准确性,而张量在分析数据的同时,能够保持多维数据的空间结构不被破坏,这极大地引起了学者们的研究热情。
张量即多维数组,它是向量和矩阵在高维上的推广,目前被广泛应用在计算机视觉、数据挖掘、信号处理等领域。
本文着重研究三阶非负张量分解问题,回顾三阶张量的非负分解模型(NTVl,阐述了算法的思想及实现过程。
接着,从张量投影的角度出发,建立了基于张量投影的非负分解模型(NTPM),阐述了模型的想法,并给出了相应的算法公式。
在收敛性分析中,给出并证明了模型KKT条件的一个等价方式以及算法收敛性定理。
实验结果表明基于张量投影的非负分解模型,相比于原有的非负分解模型,在运行时间以及逼近误差上有了一定程度的改进。
最后,讨论了NTPM模型今后研究的方向。
2020/1/16 23:33:02 2.75MB 张量分解
1
High-DimensionalStatisticsANon-AsymptoticViewpointbyMartinJ.Wainwright,UniversityofCalifornia,Berkeley。
2019年CambridgeUniversityPress旧书,高维统计经典教材,统计学习理论重要书籍。
2015/5/13 15:49:43 4.85MB 高维统计 机器学习理论 概率
1
本文设计了一种基于支持向量机(SVM)的运动目标识别算法,以对运动目标进行准确的识别和分类。
鉴于支持向量机在小样本,非线性和高维模式识别方面的优势,构造了一种基于支持向量机的分类器。
利用形状特征构成的特征向量分类样本对支持向量机进行训练和分类,结合支持向量机和二叉决策树构成多分类器。
对象特征向量用作SVM的输入,我们将使用分类器对检测到的运动对象进行分类。
实验结果表明,该算法能够准确识别和分类视频图像中的不同对象。
2021/9/4 2:30:54 299KB Object recognition support vector
1
本来代码是关于LPP算法的matlab编程,流形算法的次要思想是能够学习高维空间中样本的局部邻域结构,并寻找一种子空间能够保留这种流行结构,使得样本在投影到低维空间后,得到比较好的局部近邻关系。
2020/5/16 14:32:37 9KB LPP matlab
1
作者:Vidal,René,Ma,Yi,Sastry,S.S.2016年新书。
据作者说:研究unsupervisedlearning,从一百多年前的PCA讲到压缩感知,知识纵跨上百年。
横跨代数几何,数理统计,高维数据处理,优化算法。
而使用更涉及科学和工程各个领域,是数据科学的入门基础
2021/7/2 18:56:05 12.84MB PCA GPCA unsupervised learning
1
共 58 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡